Fungsi phi Euler
fungsi yang memberikan jumlah bilangan bulat yang relatif prima untuk inputnya Dari Wikipedia, ensiklopedia bebas
Dalam teori bilangan, fungsi phi Euler (bahasa Inggris: Euler's totient function) adalah fungsi yang menghitung bilangan bulat positif hingga diberikan bilangan bulat yang prima nisbi dengan . Fungsi ini ditulis dengan menggunakan huruf Yunani, phi, yang dilambangkan sebagai atau menyatakan kardinal himpunan bilangan asli dimana .
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Fungsi phi Euler di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel) |

Bilangan bulat positif yang < 9 adalah 1, 2, 3, 4, 5, 6, 7, 8. Diantara bilangan-bilangan tersebut yang saling prima terhadap 9 adalah 1, 2, 4, 5, 7, 8, maka banyaknya bilangan yang saling prima terhadap 9 adalah sebanyak 6 sehingga φ(9) = 6.
Fungsi ini dikemukakan oleh Leonhard Euler (L. 15 April 1707, Swiss. w. 18 September 1783, Rusia).
Identitas
Ringkasan
Perspektif
Terdapat beberapa identitas mengenai fungsi Euler phi, diantaranya:
- ,
- , untuk adalah bilangan prima
- jika
Rumus lainnya
Ringkasan
Perspektif
Apabila rumus lain mengenai fungsi Euler phi, diantaranya
- , untuk setiap
- Perhatikan kasus khusus
- Bandingkan dengan rumus
- (Lihat kelipatan persekutuan terkecil.)
- φ(n) genap untuk n ≥ 3. Selain itu, jika n memiliki r faktor prima ganjil yang berbeda, 2r | φ(n)
- Untuk a > 1 dan n > 6 sehingga 4 ∤ n terdapat l ≥ 2n sedemikian sehingga l | φ(an − 1).
- di mana adalah radikal dari .
- (dengan adalah konstanta Euler–Mascheroni).
- dimana adalah bilangan bulat positif dan adalah jumlah faktor prima yang berbeda dari .[6]
Beberapa bilangan
Ringkasan
Perspektif
100 nilai pertama (barisan A000010 pada OEIS) ditampilkan pada tabel dan grafik di bawah ini:

+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | 4 |
10 | 10 | 4 | 12 | 6 | 8 | 8 | 16 | 6 | 18 | 8 |
20 | 12 | 10 | 22 | 8 | 20 | 12 | 18 | 12 | 28 | 8 |
30 | 30 | 16 | 20 | 16 | 24 | 12 | 36 | 18 | 24 | 16 |
40 | 40 | 12 | 42 | 20 | 24 | 22 | 46 | 16 | 42 | 20 |
50 | 32 | 24 | 52 | 18 | 40 | 24 | 36 | 28 | 58 | 16 |
60 | 60 | 30 | 36 | 32 | 48 | 20 | 66 | 32 | 44 | 24 |
70 | 70 | 24 | 72 | 36 | 40 | 36 | 60 | 24 | 78 | 32 |
80 | 54 | 40 | 82 | 24 | 64 | 42 | 56 | 40 | 88 | 24 |
90 | 72 | 44 | 60 | 46 | 72 | 32 | 96 | 42 | 60 | 40 |
Dalam grafik di kanan atas baris adalah batas atas valid untuk semua selain satu, dan dicapai jika dan hanya jika adalah bilangan prima. Batas bawah sederhana adalah , yang agak longgar: sebenarnya, lower limit dari grafik sebanding dengan .[7]
Fungsi pembangkit
Ringkasan
Perspektif
Deret Dirichlet untuk dapat ditulis dalam istilah fungsi zeta Riemann sebagai:[8]
Fungsi pembangkit deret Lambert adalah[9]
konvergen untuk .
Keduanya dibuktikan dengan manipulasi deret dasar dan rumus untuk .
Rasio bilangan berurutan
Ringkasan
Perspektif
Pada tahun 1950 Somayajulu membuktikan[10][11]
- dan
Pada tahun 1954 Schinzel dan Sierpiński memperkuat ini, membuktikan[10][11] bahwa himpunan
adalah padat dalam bilangan riil positif. Mereka pun membuktikannya[10] bahwa himpunan
padat dalam interval .
Lihat pula
- Fungsi Carmichael
- Konjektur Duffin–Schaeffer
- Generalisasi teorema kecil Fermat
- Bilangan komposit tinggi
- Grup perkalian bilangan bulat modulo n
- Jumlah Ramanujan
- Fungsi penjumlahan total
Catatan
Referensi
Pranala luar
Wikiwand - on
Seamless Wikipedia browsing. On steroids.