Timeline
Chat
Prospettiva

Campo algebricamente chiuso

Da Wikipedia, l'enciclopedia libera

Remove ads

In matematica, un campo algebricamente chiuso è un campo in cui ogni polinomio non costante a coefficienti in ha una radice in (cioè un elemento tale che il valore del polinomio in è l'elemento neutro dell'addizione del campo).

Ad esempio, il campo dei numeri reali non è algebricamente chiuso, perché l'equazione polinomiale

non ha soluzioni nei reali, anche se entrambi i suoi coefficienti (3 e 1) sono reali. Al contrario, il campo dei numeri complessi è algebricamente chiuso: questo è ciò che afferma il teorema fondamentale dell'algebra.

Remove ads

Proprietà equivalenti

Riepilogo
Prospettiva

Un modo comune di esprimere il fatto che un campo è algebricamente chiuso è attraverso la riducibilità dei suoi polinomi: è algebricamente chiuso se e solo se ogni polinomio di grado può essere decomposto come , dove sono elementi di . Gli sono precisamente gli elementi del campo che annullano . Equivalentemente, è algebricamente chiuso se e solo se gli unici polinomi irriducibili sono quelli lineari.

Dalla definizione segue anche che un campo è algebricamente chiuso se e solo se non possiede estensioni algebriche proprie, o se e solo se non possiede estensioni finite proprie.

Remove ads

Cardinalità

Riepilogo
Prospettiva

Si noti che nessun campo algebricamente chiuso può essere finito.

Supponiamo che esista un campo con elementi (con elemento neutro e unità) algebricamente chiuso; prendiamo allora il polinomio , con e .

Risulta automatico che per ogni si ha e quindi non può essere algebricamente chiuso, perché esisterebbe almeno un polinomio irriducibile a coefficienti in di grado maggiore o uguale a 1.

È anche interessante notare come questa dimostrazione risulti analoga alla dimostrazione del teorema dell'infinità dei numeri primi in , in quanto equivalente ad affermare che esistono infiniti elementi irriducibili in per un campo arbitrario.

Non è necessaria una cardinalità superiore ad , basti prendere l'insieme dei numeri algebrici su in la cui cardinalità è uguale a quella di che è numerabile.

Remove ads

Chiusura algebrica

Riepilogo
Prospettiva
Lo stesso argomento in dettaglio: Chiusura algebrica.

Ogni campo può essere incluso in un campo algebricamente chiuso che è, in un certo senso, "il più piccolo" campo algebricamente chiuso che lo contiene: più precisamente, tale che nessun campo intermedio tra e è algebricamente chiuso o, equivalentemente, tale che è algebrico su . In questo caso, è detto una chiusura algebrica di : due chiusure algebriche di sono sempre tra loro isomorfe, sebbene non sia possibile in genere stabilire un isomorfismo canonico tra due chiusure algebriche (astratte) di . Per dimostrare questa proprietà è necessario usare il lemma di Zorn.

Ad esempio, il campo dei numeri complessi è una chiusura algebrica del campo dei numeri reali, ma non è la chiusura algebrica dei numeri razionali, che è invece il campo dei numeri algebrici.

Bibliografia

  • Stefania Gabelli, Teoria delle Equazioni e Teoria di Galois, Milano, Springer, 2008, ISBN 978-88-470-0618-8.
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads