Timeline
Chat
Prospettiva

Algoritmo di Bernstein-Vazirani

algoritmo quantistico Da Wikipedia, l'enciclopedia libera

Algoritmo di Bernstein-Vazirani
Remove ads

L'algoritmo di Bernstein–Vazirani, che risolve il problema di Bernstein–Vazirani è un algoritmo quantistico inventato da Ethan Bernstein e Umesh Vazirani nel 1992.[1] Si tratta di un caso particolare dell'algoritmo di Deutsch-Jozsa dove invece di distinguere due diverse classi di funzioni, cerca di conoscere una stringa codificata in una funzione.[2] L'algoritmo di Bernstein–Vazirani fu ideato per dimostrare una separazione degli oracoli tra le classi di complessità BQP e BPP.

Thumb
Circuito quantistico dell'algoritmo
Remove ads

Enunciato del problema

Dato un oracolo che implementa una funzione in cui è il prodotto scalare modulo 2 tra e una stringa segreta , , trovare .

Remove ads

Algoritmo

Riepilogo
Prospettiva

Classicamente, il metodo più efficiente per trovare la stringa segreta è valutare la funzione volte con i valori di input per ogni :[2]

In contrasto alla soluzione classica che necessita di almeno chiamate alla funzione per trovare , usando la computazione quantistica, solo una chiamata è necessaria. L'algoritmo quantistico è il seguente:[2]

Si comincia dallo stato a qubit , su cui si applica la porta di Hadamard per ottenere

Dopo, si applica l'oracolo che trasforma lo stato . Questo effetto si ottiene dalla trasformazione ( denota la somma mod 2.) dove lo stato su cui si copia la funzione è

.

Questo trasforma la sovrapposizione in

Si applica un'altra trasformata di Hadamard a ogni qubit. Essa, per i qubit dove , trasforma lo stato da a e per i qubit dove , trasforma lo stato da a . Per ottenere , viene fatta una misura nella base standard () sui qubit.

Graficamente, l'algoritmo può essere rappresentato dal seguente diagramma, dove denota la porta di Hadamard su qubit:

Il motivo per cui l'ultimo stato è è perché, per una particolare ,

Siccome è vera solo per , ciò significa che l'unica ampiezza non nulla è su . Quindi, misurando l'output del circuito nella base standard, si ottiene con certezza la stringa segreta .

Remove ads

Note

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads