Associatività

Proprietà matematica Da Wikipedia, l'enciclopedia libera

In matematica, l'associatività (o proprietà associativa) è una proprietà che può avere un'operazione binaria. Significa che l'ordine di valutazione è irrilevante se l'operazione appare più di una volta in un'espressione. Detta in altro modo, non sono richieste parentesi per un'operazione associativa. Si consideri ad esempio l'uguaglianza

(5+2)+1 = 5+(2+1)
Disambiguazione – Se stai cercando l'associatività nell'architettura a memoria cache per le CPU, vedi CPU cache.

Sommando 5 e 2 si ottiene 7, e sommando 1 si ottiene il risultato 8 per il membro a sinistra. Per valutare il membro a destra, si inizia a sommare 2 e 1 ottenendo 3, e quindi si somma 3 e 5 per ottenere 8 ancora. Quindi l'uguaglianza è verificata. Di fatto è verificata per tutti i numeri reali, non solo per 5, 2, e 1. Diciamo che "l'addizione nell'insieme dei numeri reali è un'operazione associativa".

Le operazioni associative sono frequenti in matematica, e infatti molte strutture algebriche richiedono esplicitamente che le loro operazioni binarie siano associative. Tuttavia, molte operazioni importanti non sono associative; un esempio comune è il prodotto vettoriale.

Definizione

Formalmente, un'operazione binaria su un insieme S è detta associativa se soddisfa la legge associativa:

L'ordine di valutazione non influisce sul valore di tale espressione, e si dimostra che lo stesso vale per le espressioni che contengono un numero arbitrario di operazioni . Quindi, quando è associativa, l'ordine di valutazione può essere lasciato non specificato senza causare ambiguità, omettendo le parentesi e scrivendo semplicemente:

Esempi

Riepilogo
Prospettiva

Seguono alcuni esempi di operazioni associative.

  • Se M è un dato insieme e S indica l'insieme di tutte le funzioni da M a M, allora l'operazione di composizione di funzioni su S è associativa:
  • Leggermente più in generale, dati quattro insiemi M, N, P e Q, con f: M a N, g: N a P, e h: P a Q, allora
come prima. In breve, la composizione di mappe è sempre associativa.
  • Una matrice rappresenta una trasformazione lineare fra spazi vettoriali rispetto a basi fissate, e il prodotto di matrici corrisponde alla composizione delle trasformazioni lineari corrispondenti. Dunque dall'associatività della composizione di funzioni segue l'associatività del prodotto di matrici.

Non associatività

Riepilogo
Prospettiva

Un'operazione binaria su un insieme S che non soddisfa la legge associativa è detta non associativa. In simboli,

Per tale operazione l'ordine di valutazione è importante. La sottrazione, la divisione e l'esponenziazione sono esempi ben noti di operazioni non associative:

In generale, le parentesi devono essere usate per indicare l'ordine di valutazione, se un'operazione non associativa appare più di una volta in un'espressione. Tuttavia i matematici si accordano su un particolare ordine di valutazione per molte operazioni non associative comuni. Questa è una convenzione, e non una verità matematica.

Un'operazione associativa a sinistra è un'operazione non associativa che viene valutata convenzionalmente da sinistra a destra, cioè,

mentre un'operazione associativa a destra è valutata convenzionalmente da destra a sinistra:

Esistono sia operazioni associative a sinistra che operazioni associative a destra; sotto sono dati alcuni esempi.

Altri esempi

Riepilogo
Prospettiva

Le operazioni associative a sinistra includono:

  • Sottrazione e divisione di numeri reali:

Le operazioni associative a destra includono le seguenti:

La ragione per cui l'esponenziazione è associativa a destra è che un'esponenziazione associativa a sinistra ripetuta sarebbe meno pratica: ad esempio, la funzione senza parentesi verrebbe identificata con . Le ripetizioni multiple possono (e, per chiarezza, vengono) riscritte con il simbolo di moltiplicazione:
x = y = z; è equivalente a x = (y = z); e non a (x = y) = z;
In altre parole, l'istruzione assegna il valore di z sia a y che a x.
  • nel linguaggio di programmazione APL tutte le primitive sono definite in modo da avere la stessa precedenza e sono sempre associative a destra, ad esempio:
      ⍝ ad A e C vengono assegnati degli scalari, a B un vettore, ⋄ è il separatore di statement
      A2      B1 2 3 4 5      C1
      A×B     ⍝ moltiplica lo scalare A per ogni elemento del vettore B…
2 4 6 8 10    ⍝ … il risultato è un vettore
      B+C     ⍝ somma lo scalare C ad ogni elemento del vettore B
2 3 4 5 6
      A×B+C   ⍝ moltiplica lo scalare A per ogni elemento del vettore B+C
4 6 8 10 12
      A×(B+C)  (A×B)+C
4 6 8 10 12
3 5 7 9 11
ovvero A×B+C è equivalente a A×(B+C) e non a (A×B)+C.

Operazioni non associative per cui non è stato definito nessun ordine convenzionale di valutazione includono le seguenti:

  • Prendere la media di numeri reali:

Voci correlate

Altri progetti

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.