Timeline
Chat
Prospettiva

Funzione periodica

funzione che assume valori che si ripetono a intervalli regolari detti periodi Da Wikipedia, l'enciclopedia libera

Funzione periodica
Remove ads

In matematica, a livello intuitivo, per funzione periodica si intende una funzione che assume valori che si ripetono esattamente a intervalli regolari.

Thumb
Esempio di una funzione periodica. Con P è indicato il periodo.

Definizione

Una funzione definita su un gruppo abeliano è periodica di periodo , con , se per ogni .

Remove ads

Funzioni di variabile reale

Riepilogo
Prospettiva

Le funzioni periodiche più note sono le funzioni reali di variabile reale. Formalmente, una funzione reale si dice periodica di periodo se esiste un numero reale tale che:

  • il dominio è invariante per traslazione di , ovvero ;
  • la funzione è invariante per traslazione di , ovvero per ogni si ha .

Moduli

Se è periodica di periodo ed è periodica di periodo , allora è periodica di ogni periodo

.

L'insieme dei periodi di è quindi uno -modulo.

  • Se , ovvero se ha il solo periodo , allora è detta aperiodica.
  • Se è un modulo libero di dimensione , ovvero se con , ovvero se esiste un minimo tra i periodi , allora è detta periodica di periodo minimo , o periodica di periodo in senso stretto.
  • Il modulo non è necessariamente libero di dimensione o , ovvero potrebbe non esistere un minimo periodo strettamente positivo; ad esempio, la funzione di Dirichlet ha e non è né aperiodica né periodica in senso stretto.

Domini limitati

Da ogni funzione a valori reali definita su un dominio limitato si può definire una funzione periodica, di periodo maggiore o uguale all'ampiezza del dominio. Ad esempio, la funzione identità ristretta all'intervallo ,

definisce una funzione periodica di periodo 1 definita su tutti i reali: la parte frazionaria

Esempi

  • Le funzioni trigonometriche seno e coseno sono periodiche di periodo minimo .
  • Sono quindi automaticamente periodiche le funzioni:
    • e , che hanno periodo minimo ;
    • e , che hanno periodo minimo .
Remove ads

Funzioni doppiamente periodiche

Riepilogo
Prospettiva

Una funzione può ammettere due o più periodi non commensurabili (la definizione dipende dalle caratteristiche che si richiedono al dominio).

Ad esempio, una funzione ellittica è una funzione doppiamente periodica:

è definita dall'insieme dei numeri complessi in sé, ;
è periodica rispetto a due periodi, ;
questi due periodi sono "incommensurabili",

Voci correlate

Altri progetti

Collegamenti esterni

Ulteriori informazioni Controllo di autorità ...
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads