Timeline
Chat
Prospettiva

Ellissoide

tipo di quadrica che costituisce l'analogo tridimensionale della ellisse Da Wikipedia, l'enciclopedia libera

Ellissoide
Remove ads

In geometria, per ellissoide si intende il tipo di quadrica che costituisce l'analogo tridimensionale dell'ellisse nelle due dimensioni.

Thumb
Rappresentazione di un ellissoide

Definizione

Riepilogo
Prospettiva
Thumb
Ellissoide

L'equazione dell'ellissoide standard in un sistema di coordinate cartesiane Oxyz è

,

dove , e sono numeri reali fissati tali che . Essi rappresentano i semiassi dell'ellissoide.

Questa definizione permette di individuare la seguente casistica:

  • , si ha un ellissoide scaleno;
  • Se due di questi parametri sono uguali, l'ellissoide si dice sferoide o ellissoide di rotazione
    • , si ha uno sferoide prolato
    • , si ha uno sferoide oblato
  • , si ha una sfera

Si definiscono assi centrali di inerzia gli assi di simmetria dell'ellissoide che formano un sistema di riferimento centrato nel baricentro dell'ellissoide.

Remove ads

Parametrizzazione

Utilizzando le coordinate comuni, dove è un punto di latitudine riduzione, o parametrico, e è la sua longitudine planetografica, un ellissoide può essere parametrizzato nel seguente modo:

(Si noti che questa non è parametrizzazione 1-1 ai poli, dove )

Oppure, utilizzando il sistema di coordinate sferiche, dove è la colatitudine, detta anche zenit, e è la longitudine di 360°, detta anche azimuth:

Remove ads

Volume

Il volume di un ellissoide si ottiene semplicemente da quello di una sfera e dall'effetto delle omotetie:

Area superficiale

Riepilogo
Prospettiva

L'area superficiale, invece, è fornita da espressioni molto più elaborate. Un'espressione esatta è:

dove:

mentre , denotano gli integrali ellittici incompleti di primo e secondo genere rispettivamente.

Sono disponibili anche espressioni approssimate:

  • ellissoide piatto:
  • sferoide prolato:
  • sferoide oblato:
  • ellissoide scaleno:

Se si utilizza p = 1,6075 si ha un errore relativo al più dell'1,061% (formula di Knud Thomsen); un valore p = 8/5 = 1,6 è ottimale per gli ellissoidi quasi sferici e presenta un errore relativo inferiore all'1,178% (formula di David W. Cantrell).

Remove ads

Manipolazioni lineari

Se si applica una trasformazione lineare invertibile a una sfera, si ottiene un ellissoide; in conseguenza del teorema spettrale questo ellissoide si può ricondurre alla forma standard.

L'intersezione di un ellissoide con un piano può essere o l'insieme vuoto, o un insieme contenente un singolo punto, o un'ellisse.

Dimensioni superiori

Riepilogo
Prospettiva

Si può anche definire un ellissoide in più di 3 dimensioni, come immagine di un'ipersfera sottoposta a una trasformazione lineare invertibile. Il teorema spettrale garantisce ancora la possibilità di ottenere un'equazione standard della forma

.
Remove ads

Voci correlate

Altri progetti

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads