Timeline
Chat
Prospettiva

Teorema del resto

Metodo di individuazione del resto di una divisione polinomiale con divisore "(x-a)" Da Wikipedia, l'enciclopedia libera

Remove ads

Nell'algebra, il teorema del resto fornisce un metodo per calcolare il resto di un polinomio intero quando viene diviso per un binomio della forma , senza dover eseguire la divisione. Il teorema afferma che il resto di tale divisione è uguale al valore che il polinomio assume per [1].

Dividendo un polinomio per un polinomio , si ottiene una relazione del tipo:

dove è un polinomio di grado minore di quello di . In particolare, se , la relazione diventa:

dove è una costante numerica. Sostituendo si ottiene:

Quindi ossia ciò che vogliamo dimostrare.

Remove ads

Teorema di Ruffini

Un ovvio corollario del teorema del resto è il teorema di Ruffini[2]:

Un polinomio è divisibile per se e solo se il resto della divisione è nullo, e quindi .

Questo rende possibile determinare la divisibilità di un polinomio per un binomio senza dover eseguire la divisione.

Remove ads

Note

Bibliografia

Voci correlate

Collegamenti esterni

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads