Timeline
Chat
Prospettiva
Teoria dei modelli
Da Wikipedia, l'enciclopedia libera
Remove ads
La teoria dei modelli è una branca della matematica, e più precisamente della logica, che affronta lo studio generalizzato del concetto di modello, in riferimento alle relazioni tra varie strutture ed in particolare alla soddisfacibilità di date teorie.
Linguaggio
Riepilogo
Prospettiva
In teoria dei modelli, per linguaggio (o talvolta vocabolario[1], o segnatura) si intende l'insieme di simboli tramite i quali una teoria è definita, o che una struttura interpreta. Teorie e linguaggi aventi linguaggio si dicono spesso rispettivamente -teorie e -linguaggi.
Tipicamente (nel caso di teorie e modelli del primo ordine), un linguaggio è costituito da:
- simboli di relazione
- (eventualmente) simboli di funzione
- costanti (che possono essere viste come funzioni 0-arie).
Ad esempio, la teoria dei gruppi si esprime in un linguaggio contenente un simbolo di funzione binaria, un simbolo di funzione unaria, ed una costante solitamente , oppure .
Il linguaggio della teoria dei grafi orientati comprende sempre un solo simbolo (qui rappresentato come , che in questo caso è di relazione binaria ( significherà "c'è un arco da a "). La teoria dei grafi orientati non prevede alcun assioma ed è caratterizzata semplicemente dal suo linguaggio, per cui qualsiasi teoria avente nel suo linguaggio almeno un simbolo di relazione binaria si può considerare un caso particolare della teoria dei grafi orientati. La teoria dei grafi non orientati richiede che sia una relazione irriflessiva e simmetrica.
Remove ads
Modelli e soddisfacibilità
Sia dato un linguaggio ed una teoria nel linguaggio τ (ovvero un insieme con fissate interpretazioni dei simboli in τ); si dice che la struttura che interpreta[2] il linguaggio τ soddisfa (o che la verifica, o equivalentemente che ne è un modello) se ogni funzione di è vera in dopo avere sostituito ad ogni simbolo la sua interpretazione.
Ovviamente, se è vera ogni formula di , saranno vere anche le formule che è possibile derivarne.
Remove ads
Modelli finiti e classi elementari
Riepilogo
Prospettiva
Dato un linguaggio ed una -teoria , si indica con la classe delle strutture che verificano e con il sottoinsieme di quelle finite (formalmente: aventi dominio finito).
Data una qualsiasi classe di -strutture finite chiusa per omomorfismo, esiste una teoria tale che . Questo si evince facilmente dal fatto che per ogni struttura finita è possibile trovare una formula che descrive univocamente (tale cioè che per ogni struttura si ha ), e la teoria
verifica ovviamente .
Se una tale è finita, si dice elementare. Una classe elementare può essere individuata da una singola formula:
- .
Viceversa, una classe descrivibile con una sola formula è evidentemente elementare.
Remove ads
Note
Bibliografia
Voci correlate
Altri progetti
Collegamenti esterni
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads