Timeline
Chat
Prospettiva

Wavelet Haar

Da Wikipedia, l'enciclopedia libera

Wavelet Haar
Remove ads

La wavelet Haar è stata la prima wavelet ad essere proposta nel 1909 da Alfréd Haar[1]. Haar usò queste funzioni per dare un esempio di un sistema ortonormale numerabile per lo spazio delle funzioni L2 sulla retta reale.

La wavelet Haar è anche la wavelet più semplice. Lo svantaggio della wavelet di Haar è che non è una funzione continua e quindi non è derivabile.

Thumb
La wavelet Haar

La wavelet madre di Haar è la funzione

e la sua funzione padre

Remove ads

Proprietà

Riepilogo
Prospettiva

La wavelet di Haar ha diverse proprietà:

  • Ogni funzione sufficientemente regolare può essere approssimata, in un senso che può essere precisato, da una combinazione lineare di e le loro traslazioni.
  • Ogni funzione può essere approssimata dalla funzione costante 1 e e le loro traslazioni.
  • Ortonormalità

La funzione duale di è stessa.

  • Relazione madre/padre con diversa scala m:
  • I coefficienti di scala m possono essere calcolati dai coefficienti di scala m+1

Se

Remove ads

Matrice di Haar

Riepilogo
Prospettiva

La matrice di Haar 2×2 associata con la wavelet è

Usando la trasformata wavelet discreta si può trasformare ogni sequenza di lunghezza pari in una sequenza di vettori a due componenti . Se si moltiplica ogni vettore con la matrice si ottiene il risultato ,

Se si hanno sequenze di lunghezza multiplo di quattro si possono costruire blocchi di 4 elementi e trasformarli in maniera simile con una matrice di Haar 4×4

,

Remove ads

Note

Bibliografia

Voci correlate

Altri progetti

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads