トップQs
タイムライン
チャット
視点
ケンドールの順位相関係数
ウィキペディアから
Remove ads
ケンドールの順位相関係数(けんどーるのじゅんいそうかんけいすう、英: Kendall rank correlation coefficient)やケンドールのタウ係数(英: Kendall's Tau coefficient)は、順位(Ranking)間の相関計測に用いられ、相関の強さを表す。言い換えれば、それは複数のデータ間(cross tabulations)の関連性(association)の強さを表す。1938年にモーリス・ケンドール(Maurice Kendall)によって開発された。
![]() | この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
順位相関を計測する別の方法としてはスピアマンの順位相関係数があるが、両者はほぼ同じ傾向を示す[1]。
Remove ads
定義
要約
視点
順位データ x = (x1, …, xn) と y = (y1, …, yn) とのケンドールの順位相関係数 τ は次で定義される[2]。
ここで K(または L )は n 項目から2項目を選んだときに順位関係が一致(または不一致)する組の数である。τ の分母は二項係数である。# は元の個数(濃度)を表す。また であり、集合 X と自然数 k に対して は X の k 個の元からなる部分集合全体を表す。 は < または > を表し(複号同順)、 は否定を表す。
Remove ads
特性
ケンドールの順位相関係数 τ は以下の特性を持つ。
- 順位が完全に一致している(すなわち L = 0)ならば τ = +1 である。
- 順位が完全に一致していない(すなわち K = 0)ならば τ = −1 である。
- 他のすべての場合には係数の値は−1と+1の間にあり、値の増加は相関の増大を意味する。順位が完全に独立しているなら、係数の値は0である。
参考文献
- 脇本和昌『身近なデータによる統計解析入門』森北出版、1973年。ISBN 4627090307 。
- Abdi, H. (2007) Kendall rank correlation. In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage. [3]
- Kendall, M. (1948) Rank Correlation Methods, Charles Griffin & Company Limited
- Kendall, M. (1938) "A New Measure of Rank Correlation", Biometrika, 30, 81-89.
脚注
関連項目
外部リンク
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads