トップQs
タイムライン
チャット
視点

ディリクレ定理

ウィキペディアから

Remove ads

ディリクレ定理 (ディリクレていり、英:?) は、ドイツの数学者ペーター・グスタフ・ディリクレが証明したディリクレの定理(Dirichlet's_theorem)という名前が名付けられた定理のひとつで、フーリエ級数収束についての定理である[1]

解説

要約
視点

この定理は以下の通りに書くことができる。

実関数 が 周期 2 周期関数でありながら、連続関数、そして 開区間 (-, )極値が有限個存在するならば、関数 のフーリエ級数 は全ての について 一様収束する。(此処でフーリエ係数である。)

この記事では便宜上 関数 の周期を 2 と設定した。

Remove ads

証明の型

関数 閉区間 [-, ]リーマン積分可能でありながら、ある [-, ] で連続ならばフェイェールの定理によって整数 について の時、 が成り立つ。 そこで だ。

もし、関数 のフーリエ係数 ランダウの記号を使って と書くことが出来れば連続な所でのフーリエ級数はに収束する。

上記の 「実関数 が 周期 2の周期関数でありながら、連続関数、そして開区間 (-, ) で極値が有限個存在する」という条件が を成り立たせる。 その上、連続関数なので に一様収束することも分かる。

Remove ads

証明

脚注

参考文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads