トップQs
タイムライン
チャット
視点
リチウム・硫黄電池
ウィキペディアから
Remove ads
リチウム・硫黄電池(Li-S電池、リチウム・いおうでんち)は高い比エネルギーで注目される二次電池の一種[1]。負極にアルカリ金属のリチウム(Li)、正極に硫黄(S)を使用した電池である[2]。リチウムの原子量が小さく、硫黄の原子量もコバルトなどの遷移金属より小さいことから、Li-S電池は比較的軽量である。硫黄の理論容量は1670mAh/g程度[2]あり、従来のリチウム二次電池の正極活物質であるコバルト酸リチウム (LiCoO2、約140mAh/g) の10倍程度と高い[2]うえ、硫黄の資源量が豊富で安価なためリチウムイオン電池の後継になり得るとされている[3]。
現在[いつ?]Li-S電池の比エネルギーは最高500Wh/kg程度であり、大部分で150-250Wh/kgの範囲に留まるリチウムイオン電池よりもずっと優れている。また、充放電サイクルも最大1,500回まで実証されている[4]。2014年初めの時点では商業的に入手可能なものはなかった[5]。Li-S電池の課題は硫黄陰極の電気伝導度が低いことであり、このために導電材が余分に必要となりコストと重量が嵩んでいる。現在は高導電性陰極を見出すことに焦点をあてて研究が行われている[6]。
電極での反応は以下の通りである。
- 正極 :
- 負極 :
Remove ads
化学
要約
視点
Li-S電池における化学過程には放電中のアノード表面からのリチウム溶解(アルカリ金属ポリスルフィド塩への取り込み)や充電中のアノードへの逆リチウムめっきがある[7]。これはリチウムイオンがアノードやカソードにインターカレートされる従来のリチウムイオン電池とは対照的である。1つの硫黄電子は2つのリチウムイオンをホストすることができる。普通、リチウムイオン電池はホスト原子1つあたり0.5-0.7リチウムイオンしか収容しない[8]。結果的にLi-Sははるかに高いリチウム貯蔵密度を持つ。電池が放電するにつれ、ポリスルフィドはカソード表面上で順次還元されていく。
電池が充電されるにつれ、硫黄ポリマーが多孔性拡散セパレータを横切ってカソード上に生じる。
これらの反応はナトリウム・硫黄電池の反応と類似している。
Li-S電池の主な課題は、硫黄の導電率が低く、放電時の体積変化が大きいことで、適切な陰極を見つけ出すことがLi-S電池の商業化への第一歩である[9]。ほとんどの研究者は炭素/硫黄カソードとリチウムアノードを使用している[10]。硫黄は非常に安いが電気伝導度は低く、25℃で5×10-30 S⋅cm−1 もない[11]。このため炭素をコーティングすることで導電性を補っている。カーボンナノファイバーは導電性・構造的安定性に優れるが、コストが高いのが欠点である[12]。
Remove ads
問題点
代表的な問題点は、
事である。
具体的には、カソード中の硫黄がリチウムを吸収するとき、リチウムポリスルフィド LixS の体積が膨張することである。Li2S では元の硫黄の体積から約80%も膨張する[13]。この体積変化はカソードの構造に大きな力学的負荷を生じさせ、炭素と硫黄の間の接触面積が減少し、炭素表面へのリチウムイオンの流れが妨げられる[14]。
リチウムポリスルフィドの力学的特性はリチウム含有量に強く依存し、リチウムが増加するにつれて強度は向上するが、その向上度合いはリチウム含有量に比例しない[15]
ほとんどのLi-S電池の主要な欠点の1つに電解液との望まない反応がある。S および Li2S はほとんどの電解液に比較的不溶であるが、多くの中間体のポリスルフィドはそうではない。Li2S"n" を電解液に溶かすと活性硫黄が不可逆的に失われる[16]。負極として反応性の高いリチウムを使用すると、一般的に使われる電解液のほとんどが解離する。アノード表面に保護膜を使うことが電池の安全性を改善するために研究されている。テフロンコーティングを用いると電解液の安定性が改善され[17]、LIPONやLi3Nも将来有望な性能を示した。
Remove ads
安全性
高ポテンシャルエネルギー密度および電池の非線形放充電反応のために、マイクロコントローラやその他の安全回路が電圧レギュレータとともに電池の動作を管理し急速放電を防止するために使われることがある[18]。
研究
要約
視点
Remove ads
商業化
2015年現在、工業規模でこの技術を商業化することができた企業はほとんどなかった。Sion Powerなどの企業はAirbus Defence and Spaceと提携してリチウム硫黄電池技術をテストした。Airbus Defense and Spaceは日中に太陽エネルギーを利用し夜間にリチウム硫黄電池から電力を得る高高度擬似衛星(High Altitude Pseudo-Satellite、HAPS)の試作品の打ち上げに成功し、11日間飛行を行った。試験飛行には350W⋅h/kgを供給するSion PowerのLi-S電池を使用した[39]。Sionは2017年末までに大量生産を開始すると主張している[40]。
イギリスの会社OXIS Energyはリチウム硫黄電池の試作品を開発し、現在小規模な商業用のテストアプリケーションで動作を行っている。2015年6月現在、OXIS Energyは2016年からの蓄電池の販売を予定していた[41][42]。インペリアル・カレッジ・ロンドンとクランフィールド大学とともに電池用の等価回路ネットワークモデルを発表した[43]。デンマークのLithium Balanceとともに主に中国市場向けのスクーター電池システムの試作品を構築した。試作品の電池は10Ah OXIS Long Lifeセルを使用し1.2kWhの容量を持ち、鉛蓄電池よりも重量が60%少なく、幅が大きく増加する[44]。重量わずか25kgで完全にスケーラブルな3U, 3,000Whラックマウント型電池を構築した[45]。OXISはリチウム硫黄電池の量産時に約200ドル/kWhのコストがかかると予測している[46]。OXISは宇宙環境のためのリチウム硫黄電力の欧州コンソーシアム(European Consortium for Lithium-Sulphur Power for Space Environments、ECLIPSE)の2020年度プロジェクトにも参加している。このプロジェクトでは衛星や発射装置用の大容量Li-S電池の開発を行っている[47]。
最初にリチウムイオン電池を商品化したSonyは2020年にリチウム硫黄電池を市場に投入する予定である[48]。
実用例
Remove ads
脚注
外部リンク
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads