トップQs
タイムライン
チャット
視点

代数的内部

ウィキペディアから

Remove ads

数学の一分野である函数解析学において、ベクトル空間の部分集合の代数的内部(だいすうてきないぶ、: algebraic interior)あるいは動径核(radial kernel)は、集合の内部を細緻化する概念である。与えられた集合の代数的内部とは、その集合に属する点であって、その点を原点としてもとの集合が併呑となるような点、すなわちその集合の動径点英語版[1]の全体である。代数的内部の元は、しばしば(代数的)内点(internal points)と呼ばれる[2][3]

具体的に、線型空間であるとき、 の代数的内部は次で定義される。

[4]

一般に であることに注意されたい。しかし 凸集合であるなら、 である。また が凸集合であるときは、 に対して が成立する。

Remove ads

で与えられるなら、 である。しかし、 および である。

Remove ads

性質

であるなら、次が成り立つ。

  • 併呑集合であるための必要十分条件は、 である[1]
  • [5]
  • [5] であるなら、 である[5]

内部との関係

線型位相空間とし、 を内部作用素とし、 とする。このとき次が成り立つ:

  • が空でない凸集合で、 が有限次元であるなら、 である[2]
  • が凸集合で、その内部が空でないなら、である[6]
  • が閉凸集合で、完備距離空間であるなら、である[7]
Remove ads

脚注

関連項目

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads