トップQs
タイムライン
チャット
視点

関数解析学

フーリエ変換や微分方程式、積分方程式などの研究に端を発している解析学 ウィキペディアから

Remove ads
Remove ads

関数解析学(かんすうかいせきがく、: functional analysis: Analyse fonctionnelle函数解析学とも書かれる。別名は位相解析学。)は数学(特に解析学)の一分野で、フーリエ変換微分方程式積分方程式などの研究に端を発している[1][2][3][4]。特定のクラスの関数からなるベクトル空間にある種の位相構造を定めた関数空間や、その公理化によって得られる線形位相空間構造が研究される[1][2][3][4]。主な興味の対象は、様々な関数空間上で積分や微分によって定義される線型作用素の振る舞いを通じた積分方程式微分方程式線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い[1][2][3]。また、無限次元空間上での微分 (フレシェ微分など) を扱うため、無限次元空間上での微分積分学という捉え方も可能である[4]

Remove ads

応用

関数解析の中でも特にヒルベルト空間論量子力学の数学的基礎である[5][6]。また、コンピュータが高度に発達した現代においては数値解析(特に有限要素法精度保証付き数値計算)において微分方程式の解の存在を議論するためなどに使われる他[7][8][9][10][11]機械学習にも応用される[12]

主な研究者

海外

日本

関連項目

微分

関数解析の定理

不等式

不動点定理

関数空間

作用素

関連分野

半群

出典

Loading content...

参考文献

Loading content...

外部リンク

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads