トップQs
タイムライン
チャット
視点
楕円曲線のハッセの定理
ウィキペディアから
Remove ads
楕円曲線のハッセの定理(英語: Hasse's theorem on elliptic curves)は、ハッセの境界とも呼ばれ、有限体上の楕円曲線の持つ点の数の、上と下からの評価を与える。
![]() | 原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。 |
位数 q の有限体上の楕円曲線 E の点の数が N であるとき、ヘルムート・ハッセ(Helmut Hasse)の結果は、その個数が
であることを示している。つまり、この解釈は、N が q + 1 (これは同じ体の上の射影直線(projective line)の点の数である)と異なっていれば、この差「エラー項」は、絶対値が である2つの複素数の和である。
この結果は、エミール・アルティン(Emil Artin)により彼の論文で元々予想されたものである[1]。これは1933年にハッセ(Hasse)により証明され、証明は一連の論文で出版された[2]。
ハッセの定理は、E の局所ゼータ函数の根の絶対値の決定と同値である。この形で、楕円曲線に付随する函数体のリーマン予想との類似を理解することができる。
Remove ads
ハッセ・ヴェイユ境界
ハッセ境界の高次種数の代数曲線への一般化はハッセ・ヴェイユ境界である。これは、有限体上の曲線の点の数の範囲をもたらす。位数が q の有限体 上の種数 g の曲線 C の点の数を とすると、
となる。
この結果は再び、曲線 C の局所ゼータ函数の決定と同値であり、この曲線に付随する函数体についてのリーマン予想の類似である。
ハッセ・ヴェイユ境界は、g = 1 である楕円曲線へ適用したときの普通のハッセ境界を導く。
ハッセ・ヴェイユ境界は、元々はアンドレ・ヴェイユ(André Weil)が1949年に提唱したヴェイユ予想の結果である[3]。この予想は1974にピエール・ドリーニュ(Pierre Deligne)より証明された。[4]
Remove ads
参考文献
参照項目
参考文献
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads