トップQs
タイムライン
チャット
視点

Tor関手

テンソル積の関手の導来関手 ウィキペディアから

Remove ads

ホモロジー代数において、Tor 関手 (: Tor functor, torsion functor) はテンソル積の関手の導来関手である。それらは最初一般に代数トポロジーにおいてKünnethの定理英語版普遍係数定理を表現するために定義された[要出典]

特に Rとし、R-Mod で左 R-加群を、Mod-R で右 R-加群の圏を表す[注釈 1]R-Mod の加群 B をひとつ選んで固定する。Mod-R の対象 A に対し、T(A) = ARB とおく。すると TMod-R からアーベル群の圏 Ab への右完全関手である[注釈 2]。そして、その左導来関手 LnT が定義される。

とおく。すなわち、射影分解

をとり A の項を取り除き射影分解に B をテンソルして複体

を得る[注釈 3]。そしてこの複体のホモロジーをとる。

Remove ads

性質

要約
視点
  • すべての n 1 に対して、TorR
    n
    Mod-R × R-Mod から Ab への加法的関手である。R が可換である場合には、Mod-R × Mod-R から Mod-R への加法的関手である。
  • 導来関手のすべての族に対して正しいように、すべての短完全列 0 → KLM → 0 は次の形の長完全列を誘導する。
  • R が可換で r R零因子でなければ、

であり[1]、ここから用語 Tor (すなわち Torsion) が来ている。捩れ部分群参照。

  • すべての n 2 に対して、TorZ
    n
    (A, B) = 0 である[2]。理由:自由アーベル群の部分群は自由アーベル群なので、すべてのアーベル群 A は長さ1の自由分解をもつから。なのでこの重要な特別な場合には、n 2 の Tor 関手は消える。さらに、 f : A A で"k 倍写像"を表すと TorZ
    1
    (Z/kZ, A) = Ker(f) である。
  • さらに、すべての自由加群は長さ0の自由分解をもつので、上記の議論から、F が自由 R-加群であれば、すべての n 1 に対して TorR
    n
    (F, B) = 0。
  • 有限生成アーベル群の分類から、すべての有限生成アーベル群は ZZk のコピーの直和であることを知っている。このことと前の3つから、A が有限生成であるときにはいつでも TorZ
    1
    (A, B) を計算することができる。
  • 加群 M Mod-R平坦であることと、TorR
    1
    (M, – ) = 0 であることは同値である。このとき、すべての n 1 に対して TorR
    n
    (M, – ) = 0 でさえある[3]。実は、TorR
    n
    (A, B) を計算するには、射影分解の代わりに A あるいは B平坦分解を使ってもよい[注釈 4]
Remove ads

脚注

参考文献

関連項目

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads