ខាងក្រោមនេះគឺជា តារាងអាំងតេក្រាលនៃអនុគមន៍អិចស្ប៉ូណង់ស្យែល ៖ សំគាល់ ៖ x {\displaystyle x\,} អាចត្រូវជំនួសដោយ u {\displaystyle u\,} ឬ អថេរផ្សេងទៀត។ ∫ e c x d x = 1 c e c x {\displaystyle \int e^{cx}\;\mathrm {d} x={\frac {1}{c}}e^{cx}} ∫ a c x d x = 1 c ⋅ ln a a c x {\displaystyle \int a^{cx}\;\mathrm {d} x={\frac {1}{c\cdot \ln a}}a^{cx}} ចំពោះ a > 0 , a ≠ 1 {\displaystyle a>0,\ a\neq 1} ∫ x e c x d x = e c x c 2 ( c x − 1 ) {\displaystyle \int xe^{cx}\;\mathrm {d} x={\frac {e^{cx}}{c^{2}}}(cx-1)} ∫ x 2 e c x d x = e c x ( x 2 c − 2 x c 2 + 2 c 3 ) {\displaystyle \int x^{2}e^{cx}\;\mathrm {d} x=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)} ∫ x n e c x d x = 1 c x n e c x − n c ∫ x n − 1 e c x d x {\displaystyle \int x^{n}e^{cx}\;\mathrm {d} x={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}\mathrm {d} x} ∫ e c x x d x = ln | x | + ∑ n = 1 ∞ ( c x ) n n ⋅ n ! {\displaystyle \int {\frac {e^{cx}}{x}}\;\mathrm {d} x=\ln |x|+\sum _{n=1}^{\infty }{\frac {(cx)^{n}}{n\cdot n!}}} ∫ e c x x n d x = 1 n − 1 ( − e c x x n − 1 + c ∫ e c x x n − 1 d x ) {\displaystyle \int {\frac {e^{cx}}{x^{n}}}\;\mathrm {d} x={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,\mathrm {d} x\right)\,} ចំពោះ n ≠ 1 {\displaystyle n\neq 1\,} ∫ e c x ln x d x = 1 c e c x ln | x | − Ei ( c x ) {\displaystyle \int e^{cx}\ln x\;\mathrm {d} x={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)} ដែល Ei ( ⋅ ) {\displaystyle \operatorname {Ei} \,(\cdot )} គឺជាអនុគមន៍អាំងតេក្រាលអិចស្ប៉ូណង់ស្យែល ∫ e c x sin b x d x = e c x c 2 + b 2 ( c sin b x − b cos b x ) {\displaystyle \int e^{cx}\sin bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)} ∫ e c x cos b x d x = e c x c 2 + b 2 ( c cos b x + b sin b x ) {\displaystyle \int e^{cx}\cos bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)} ∫ e c x sin n x d x = e c x sin n − 1 x c 2 + n 2 ( c sin x − n cos x ) + n ( n − 1 ) c 2 + n 2 ∫ e c x sin n − 2 x d x {\displaystyle \int e^{cx}\sin ^{n}x\;\mathrm {d} x={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;\mathrm {d} x} ∫ e c x cos n x d x = e c x cos n − 1 x c 2 + n 2 ( c cos x + n sin x ) + n ( n − 1 ) c 2 + n 2 ∫ e c x cos n − 2 x d x {\displaystyle \int e^{cx}\cos ^{n}x\;\mathrm {d} x={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;\mathrm {d} x} ∫ x e c x 2 d x = 1 2 c e c x 2 {\displaystyle \int xe^{cx^{2}}\;\mathrm {d} x={\frac {1}{2c}}\;e^{cx^{2}}} ∫ e − c x 2 d x = π 4 c erf ( c x ) {\displaystyle \int e^{-cx^{2}}\;\mathrm {d} x={\sqrt {\frac {\pi }{4c}}}{\mbox{erf}}({\sqrt {c}}x)} ដែល erf ( ⋅ ) {\displaystyle {\mbox{erf}}(\cdot )} ជាអនុគមន៍កំហុស(error function) ∫ x e − c x 2 d x = − 1 2 c e − c x 2 {\displaystyle \int xe^{-cx^{2}}\;\mathrm {d} x=-{\frac {1}{2c}}e^{-cx^{2}}} ∫ 1 σ 2 π e − ( x − μ ) 2 / 2 σ 2 d x = 1 2 ( 1 + erf x − μ σ 2 ) {\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;\mathrm {d} x={\frac {1}{2}}(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {2}}}})} ∫ e x 2 d x = e x 2 ( ∑ j = 0 n − 1 c 2 j 1 x 2 j + 1 ) + ( 2 n − 1 ) c 2 n − 2 ∫ e x 2 x 2 n d x {\displaystyle \int e^{x^{2}}\,\mathrm {d} x=e^{x^{2}}\left(\sum _{j=0}^{n-1}c_{2j}\,{\frac {1}{x^{2j+1}}}\right)+(2n-1)c_{2n-2}\int {\frac {e^{x^{2}}}{x^{2n}}}\;\mathrm {d} x\,} ចំពោះ n > 0 {\displaystyle n>0\,} ដែល c 2 j = 1 ⋅ 3 ⋅ 5 ⋯ ( 2 j − 1 ) 2 j + 1 = ( 2 j ) ! j ! 2 2 j + 1 , {\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}}}={\frac {(2j)\,!}{j!\,2^{2j+1}}}\ ,} ∫ x x ⋅ ⋅ x ⏟ m d x = ∑ n = 0 m ( − 1 ) n ( n + 1 ) n − 1 n ! Γ ( n + 1 , − ln x ) + ∑ n = m + 1 ∞ ( − 1 ) n a m n Γ ( n + 1 , − ln x ) (for x > 0 ) {\displaystyle \int {_{\underbrace {x^{x^{\cdot ^{\cdot ^{x}}}}} } \atop _{m}}dx=\sum _{n=0}^{m}{\frac {(-1)^{n}(n+1)^{n-1}}{n!}}\Gamma (n+1,-\ln x)+\sum _{n=m+1}^{\infty }(-1)^{n}a_{mn}\Gamma (n+1,-\ln x)\qquad {\mbox{(for }}x>0{\mbox{)}}} [១] ដែល a m n = { 1 if n = 0 , 1 n ! if m = 1 , 1 n ∑ j = 1 n j a m , n − j a m − 1 , j − 1 otherwise {\displaystyle a_{mn}={\begin{cases}1&{\text{if }}n=0,\\{\frac {1}{n!}}&{\text{if }}m=1,\\{\frac {1}{n}}\sum _{j=1}^{n}ja_{m,n-j}a_{m-1,j-1}&{\text{otherwise}}\end{cases}}} Remove adsអាំងតេក្រាលកំនត់Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads