상위 질문
타임라인
채팅
관점
대각 행렬
위키백과, 무료 백과사전
Remove ads
선형대수학에서 대각 행렬(對角行列, 영어: diagonal matrix)은 주대각선 성분이 아닌 모든 성분이 0인 정사각 행렬이다.[1][2][3]:100
정의
환 위의 정사각 행렬 에 대하여, 다음 두 조건이 서로 동치이며, 이를 만족시키는 행렬을 대각 행렬이라고 한다.
각 번째 대각 성분이 인 대각 행렬은 다음과 같이 표기할 수 있다.
마찬가지로, 임의의 크기 의 대각 행렬을 정의할 수 있으며, 이 경우 다음과 같은 표기를 사용할 수 있다.[1]:18, §1.2.6
Remove ads
성질
요약
관점
대칭성과 반대칭성
환 위의 모든 대각 행렬 는 대칭 행렬이자 반대칭 행렬이다.
표수가 2가 아닌 환 위의 정사각 행렬 에 대하여, 다음 두 조건이 서로 동치이다.
(표수 2의 환 위에서는 대칭 행렬과 반대칭 행렬이 동치이며, 이는 일반적으로 대각 행렬과 동치가 아니다.)
고윳값
체 위의 대각 행렬 의 고윳값은 대각 성분들이다. 각 고윳값의 기하적 중복도는 대수적 중복도와 일치하며, 이는 단순히 대각 성분이 나타난 횟수이다.
대각화
직교 대각화와 유니터리 대각화
실수 정사각 행렬 에 대하여, 다음 두 조건이 서로 동치이다.[2]::315, §8.5
- 은 직교 대각화 가능 행렬이다. 즉, 가 대각 행렬이 되는 실수 직교 행렬 가 존재한다.
- 은 대칭 행렬이다.
복소수 정사각 행렬 에 대하여, 다음 두 조건이 서로 동치이다.[2]::311–317, §8.5
- 은 유니터리 대각화 가능 행렬이다. 즉, 가 대각 행렬이 되는 유니터리 행렬 이 존재한다.
- 은 정규 행렬이다.
복소수 정사각 행렬 에 대하여, 다음 세 조건이 서로 동치이다.[2]::315–316, §8.5, Theorem 20
특히, 대각 행렬이 아닌 복소수 상·하삼각 행렬은 유니터리 대각화 가능하지 않다.
Remove ads
예
요약
관점
모든 스칼라 행렬은 대각 행렬이다. 특히, 단위 행렬과 영행렬은 대각 행렬이다.
다음 실수 정사각 행렬은 대각 행렬이다.
다음 실수 행렬은 대각 행렬이다.
다음 실수 행렬은 대각 행렬이다.
Remove ads
같이 보기
각주
외부 링크
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads