상위 질문
타임라인
채팅
관점

대각 행렬

위키백과, 무료 백과사전

Remove ads

선형대수학에서 대각 행렬(對角行列, 영어: diagonal matrix)은 주대각선 성분이 아닌 모든 성분이 0인 정사각 행렬이다.[1][2][3]:100

정의

위의 정사각 행렬 에 대하여, 다음 두 조건이 서로 동치이며, 이를 만족시키는 행렬을 대각 행렬이라고 한다.

  • 임의의 에 대하여, 만약 라면,
  • 상삼각 행렬이며, 동시에 하삼각 행렬이다.

번째 대각 성분이 인 대각 행렬은 다음과 같이 표기할 수 있다.

마찬가지로, 임의의 크기 의 대각 행렬을 정의할 수 있으며, 이 경우 다음과 같은 표기를 사용할 수 있다.[1]:18, §1.2.6

Remove ads

성질

요약
관점

대칭성과 반대칭성

위의 모든 대각 행렬 대칭 행렬이자 반대칭 행렬이다.

표수가 2가 아닌 위의 정사각 행렬 에 대하여, 다음 두 조건이 서로 동치이다.

(표수 2의 환 위에서는 대칭 행렬반대칭 행렬동치이며, 이는 일반적으로 대각 행렬과 동치가 아니다.)

고윳값

위의 대각 행렬 고윳값은 대각 성분들이다. 각 고윳값의 기하적 중복도는 대수적 중복도와 일치하며, 이는 단순히 대각 성분이 나타난 횟수이다.

대각화

위의 모든 대각 행렬 는 자명하게 대각화 가능 행렬이다.

위의 정사각 행렬 에 대하여, 다음 조건들이 서로 동치이다.

  • 은 대각화 가능 행렬이다.
  • 의 모든 고윳값의 기하적 중복도는 그 대수적 중복도와 일치한다.
  • 최소 다항식은 1차 다항식들의 곱이다.

직교 대각화와 유니터리 대각화

실수 정사각 행렬 에 대하여, 다음 두 조건이 서로 동치이다.[2]::315, §8.5

  • 직교 대각화 가능 행렬이다. 즉, 가 대각 행렬이 되는 실수 직교 행렬 가 존재한다.
  • 대칭 행렬이다.

복소수 정사각 행렬 에 대하여, 다음 두 조건이 서로 동치이다.[2]::311–317, §8.5

복소수 정사각 행렬 에 대하여, 다음 세 조건이 서로 동치이다.[2]::315–316, §8.5, Theorem 20

특히, 대각 행렬이 아닌 복소수 상·하삼각 행렬은 유니터리 대각화 가능하지 않다.

Remove ads

요약
관점

모든 스칼라 행렬은 대각 행렬이다. 특히, 단위 행렬영행렬은 대각 행렬이다.

다음 실수 정사각 행렬은 대각 행렬이다.

다음 실수 행렬은 대각 행렬이다.

다음 실수 행렬은 대각 행렬이다.

Remove ads

같이 보기

각주

외부 링크

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads