상위 질문
타임라인
채팅
관점

방사성 탄소 연대 측정

탄소-14를 사용해 연대를 추정하는 방사능 연대 측정의 한 방법 위키백과, 무료 백과사전

방사성 탄소 연대 측정
Remove ads

방사성 탄소 연대 측정법(放射性炭素年代測定法, 영어: radiocarbon dating)은 탄소화합물 중의 탄소의 극히 일부에 포함된 방사성 동위 원소탄소-14(14C)의 조성비를 측정하여 그 만들어진 연대를 추정하는 방사능 연대 측정의 한 방법이다. 간단하게 탄소연대측정이라고도 부른다.

Thumb
뉴질랜드 웰링턴[1]과 오스트리아 벌먼트[2]에서 측정한 대기중 탄소-14 농도의 연간 변화. 뉴질랜드 데이터는 남반구를 대표하며, 오스트리아 데이터는 북반구를 대표한다. 북반구에서의 탄소-14 농도는 대기중 핵실험 때문에 거의 두배로 증가하였다[3].

사용

탄소연대측정이 가장 많이 사용되는 대상은 유기물이 포함되어 있는 고고학 유물이다.[출처 필요] 코로나 질량 방출 등과 같은 이유로 우주선이 생기는데 이 우주선에 의해 생성되는 중성자질소-14와 핵반응을 일으켜 탄소-14가 붕괴되는 만큼 다시 생성하여 대기중의 탄소-14 비율이 일정[4]하다. 식물광합성, 동물호흡을 통해 대기중에 있는 탄소를 주고 받기 때문에, 살아 있는 동물과 식물이 가지고 있는 탄소-14의 비율은 공기중의 비율과 일치한다. 사후에는 외부와 격리된 상태에서 탄소-14만이 방사성으로 시간에 따라 감소하므로 반감기를 통해 경과시간 추정이 가능해진다.

탄소-14의 반감기는 약 5730년이며, 이를 이용하여 6만년까지의 연대를 측정할 수 있다. 보정(calibration)을 거치지 않은 순 연대에 대해 흔히 1950년을 기준으로 거꾸로 올라가는 BP(Before Present)라는 단위를 쓰며, 보정을 통해 실제의 날짜와 일치시킨다. 1950년을 기준으로 삼는 것은 핵실험에 의해 대기중 탄소-14의 양이 인위적으로 변화한 시점이 1950년이기 때문이다. 보정에 있어서는 일반적으로 매우 오랫동안 살아있는 나무를 이용한다. 나무는 나이테 분석을 통해 그 나이를 정확히 알 수 있기 때문이다.

이 기술은 시카고 대학교윌러드 리비(Willard Libby)와 그의 동료들이 1949년에 발견하였다. 리비는 탄소-14를 이용하면 1분에 단위 그램 당 14개의 14C가 붕괴한다는 결과를 얻었고, 이로 인해 1960년 노벨 화학상을 받게 되었다.[5]

Remove ads

방법

탄소-14의 양을 실험적으로 측정하는 방법으로 방사선 계측법과 가속기 질량 분석법이 이용된다.

베타계수법

방사선 계측법, 또는 베타계수법은 시료 속에 포함된 탄소-14가 베타 붕괴를 일으키며 방출하는 전자의 수를 정밀 측정하여 탄소-14의 양을 역산하는 방법이다. 베타계수법은 기체 비례 계수법(Gas proportional counting)과 시료 중의 탄소를 벤젠으로 변환시켜 베타선 검출기로 측정하는 액체 섬광 검출법(Liquid scintillation counting, LCS) 두 가지 방법이 있다. 이 방법은 탄소-14의 반감기가 상대적으로 길기 때문에 적은 수의 전자만을 관찰할 수 있고, 이에 따라 상대적으로 큰 통계적 오차를 발생시킨다.[5][6]

질량분석법

Thumb
탄소-14 원자를 검출하고 측정하는 직렬가속기(Tandem Accelerator)의 모식도

가속기 질량 분석법은 매우 적은 양의 시료로도 탄소-14의 비율을 정확히 알 수 있다. 가속기 질량 분석법은 시료속의 탄소 원자를 이온화 시킨 후, 입자 가속기로 가속한다. 가속된 이온을 자기장을 통과 시키면 그 질량에 따라 다른 궤적을 보이는데, 이를 통해 탄소-14와 다른 탄소 동위원소를 구분할 수 있다.[7][5]

베타계수법에 대한 질량분석법의 장점으로는 곤충의 일부[8]와 같은 매우 적은 양의 시료로도 연대측정이 가능하고 분석의 정밀도가 향상되어 6만년까지 측정이 가능하며 효율성도 높다. 단점으로는 비용이 높다.[5][6]

복수의 실험실에서 수행된 연대 측정 결과 베타계수법(기체 비례 계수법, 액체 섬광 검출법)과 질량분석법 간에는 큰 차이가 없다.[9][10]

Remove ads

방사성 탄소 연대 측정의 오차

오염

시료에 더 오래되거나 새로운 탄소가 첨가되어 연대 측정에 오차가 발생할 수 있다. 예를 들어, 건조 시료 1mg에 0.1mg의 현대 탄소가 첨가되면 약 2100~2700년의 오차가 발생할 수 있다. 오염은 시료 채취 도중 혹은 실험실에서도 발생할 수 있다. 이러한 오염을 제거하기 위해 물리적, 화학적 전처리 과정을 수행한다.[11][5]

해양

탄소-14가 포함된 이산화탄소는 탄산염의 형태로 해수에 혼합된다. 상층부의 해수가 침강하면 해수가 겉보기 연대(Apparent age)를 갖게 된다.[5] 이 연령 효과는 인도양 북부에서 30년[12], 태평양 적도 지역에서 600년[13] 등으로 보고되어 있다.

탄소-14 변동

탄소-14 생산량은 장기 혹은 단기적으로 변동한다. 실제로 대기 중 탄소-14의 큰 변이가 25,000 yr BP 이전에 발생했다는 것이 발견되었으며[14] 이는 3~5만 년 전의 연대 측정에 문제가 되었다.[15] 탄소-14 변동의 원인으로는 지구 자기장의 변화나 태양 흑점 활동 변화로 인해 우주선 유입이 변동하거나[16] 해양 순환 패턴의 변화로 해양 이산화탄소가 대기로 방출되는 양의 증가나 감소된다는 가설이 있다.[17]

인간의 활동 또한 탄소-14 농도에 영향을 준다. 산업 혁명 이후 지난 250년간 화석연료 사용으로 대량의 탄소-12가 대기 중에 방출되었으며 이는 탄소-14 농도를 낮추는 효과를 가져왔다. 그러나 이 산업효과는 1960년대 대기 중 탄소-14의 농도를 증가시킨 원자폭탄 실험으로 상쇄되었다.[5][18][6]

호수 퇴적물

호수 퇴적물은 오염이 쉽게 되어 신뢰할 만한 연대를 얻기 어렵다. 탄산염(주로 석회암)을 포함한 호수는 물의 탄소-14 농도를 희석시켜 담수호 물질의 겉보기 연대를 1600년 정도 증가시킨다.[19]

같이 보기

각주

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads