상위 질문
타임라인
채팅
관점

실베스터 행렬

위키백과, 무료 백과사전

Remove ads

가환대수학에서 실베스터 행렬(Sylvester行列, 영어: Sylvester matrix)은 두 다항식의 공약 다항식에 대한 정보를 담고 있는 정사각 행렬이다.[1]

정의

가환환 계수를 갖는 두 0이 아닌 다항식 실베스터 행렬 정사각 행렬이다. 구체적으로, 만약

라면, 실베스터 행렬은 다음과 같은 행렬이다.

Remove ads

성질

요약
관점

가환환 계수를 갖는 두 다항식의 실베스터 행렬의 행렬식은 두 다항식의 종결식과 같다. 가환환 계수의 다항식의 판별식은 자기 자신과 그 도함수의 종결식을 사용하여 나타낼 수 있으므로, 역시 실베스터 행렬의 행렬식을 통해 나타낼 수 있다.

두 다항식 에 대하여,

이다. 여기서 행렬의 계수이다.

특히, 대수적으로 닫힌 체 및 두 다항식 가 근을 공유하지 않을 필요충분조건가역 행렬인 것이며, 필요충분조건이다.

Remove ads

역사

제임스 조지프 실베스터가 도입하였다. 실베스터는 판별식을 실베스터 행렬의 행렬식을 통해 나타낼 수 있음을 보였다.[2]:149

참고 문헌

외부 링크

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads