에구치-핸슨 공간
위키백과, 무료 백과사전
이론물리학에서 에구치-핸슨 공간(Eguchi[江口]-Hanson空間, 영어: Eguchi–Hanson space)은 4차원 초켈러 다양체의 하나이며, A1 점근 국소 유클리드 공간이다. 즉, 콤팩트하지 않으며, 점근적으로 (즉, 중심에서 멀리 떨어져) 의 꼴이다. 중력적 순간자의 일종으로 해석할 수 있다.
정의
요약
관점
에구치-핸슨 공간은 위상수학적으로 (2차원 구면의 여접다발)이다. 복소수 좌표 에 대하여, 계량 텐서는 다음과 같다.
여기서 이고, 는 순간자의 크기를 나타내는 매개 변수다. 이 좌표에서 로 간주하면, 에서 특이점이 없음을 보일 수 있다.
이는 퍼텐셜
에 대한 기번스-호킹 가설 풀이로 구성될 수 있다.
성질
에구치-핸슨 공간은 SU(2)=USp(2) 홀로노미를 가진다. 따라서 이는 칼라비-야우 다양체이자 초켈러 다양체이다.
에구치-핸슨 공간의 호지 수들은 다음과 같다.
1 0 0 0 1 0 0 0 1
여기서 유일한 2차 호몰로지는 반 자기 쌍대(anti-self-dual)이다. 즉, 반(反) 자기 쌍대 2차 미분 형식 (양-밀스 순간자)이 존재한다.
역사
에구치 도루(일본어:
참고 문헌
같이 보기
Wikiwand - on
Seamless Wikipedia browsing. On steroids.