상위 질문
타임라인
채팅
관점
웨어링의 문제
에드워드 웨어링이 제기한 수학 문제 위키백과, 무료 백과사전
Remove ads
웨어링의 문제(Waring's problem)는 에드워드 웨어링이 1770년에 제기한 문제로, 수학의 정수론에서 모든 자연수는 최대 's'개의 'k'제곱의 합으로 쓸 수 있는가 하는 문제이다. 마찬가지로 모든 자연수는 9개 이하의 세제곱수의 합으로 표현할 수 있고, 19개 이하의 네제곱수의 합으로 표현할 수 있다. 이에 대해 가능하다는 해답을 다비트 힐베르트가 1909년에 제시하였다.
예시
모든 수는 최대 4개의 제곱수의 합으로 쓸 수 있다. 즉, 'k=2'에 대해 's=4'이다.
Remove ads
g(k)
g(k)는 모든 수를 최대의 k제곱수의 합으로 표시할 수 있는 수를 말한다. 3k보다 작은 수는 2k와 1의 합으로 표시해야 한다. 3k보다 작은수에서 최대의 k제곱수의 합으로 표시된다고 추론되었고 충분히 큰 수에 대해 증명되었다.
G(k)
G(k)는 충분히 큰 수 이상에서 모든 수를 몇개의 k제곱수의 합으로 표시할 수 있는 최소의 수를 말한다.
같이 보기
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads