상위 질문
타임라인
채팅
관점

크룰 높이 정리

위키백과, 무료 백과사전

Remove ads

가환대수학에서 크룰 높이 정리(영어: Krull’s height theorem)는 뇌터 환에서 n개의 원소로 생성된 아이디얼높이n 이하라는 정리이다.

정의

요약
관점

다음과 같은 데이터가 주어졌다고 하자.

  • 가환 뇌터 환
  • 자연수
  • 임의의 성분의 행렬

그렇다면, 개의 소행렬식(영어: minor)들을 갖는다. 크룰 높이 정리에 따르면, 이 소행렬식들로 생성되는 -아이디얼 전체가 아니라면, 그 높이 이하이다.

특히, 인 경우, 개의 원소로 생성되는 아이디얼 높이 이하이다.

반대로, 높이소 아이디얼개의 원소로 생성될 수 있다.

특히, 크룰 높이 정리에서 을 취하면, 가역원이 아닌 원소로 생성되는 주 아이디얼의 높이는 1 이하임을 알 수 있다.

크룰 정역의 경우

크룰 높이 정리는 크룰 정역에 대하여 부분적으로 성립한다. 구체적으로, 크룰 정역의 모든 진 아이디얼주 아이디얼의 높이는 0 또는 1이다. (그러나 뇌터 환이 아닌 크룰 정역의 경우, 이는 2개 이상의 원소로 생성되는 아이디얼에 대하여 성립하지 않을 수 있다.)[1]

Remove ads

역사

볼프강 크룰이 1928년에 인 경우를 증명하였다.[2]

1961년에 존 얼론조 이건(영어: John Alonzo Eagon)이 이를 소행렬식에 대하여 일반화하였다.[3]

참고 문헌

외부 링크

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads