상위 질문
타임라인
채팅
관점
탁구 정리
위키백과, 무료 백과사전
Remove ads
군론에서, 탁구 정리(卓球定理, 영어: ping-pong lemma)는 어떤 부분군들의 합집합으로 생성되는 부분군이 각 성분들의 자유곱임을 보이는 정리이다.

정의
요약
관점
다음이 주어졌다고 하자.
또한, 다음이 성립한다고 하자.
탁구 정리에 따르면, 다음이 성립한다.
여기서 좌변은 의 부분 집합으로 생성되는 부분군이며, 우변은 군들의 자유곱이다.
증명:
임의의
에 대하여,
- ㈎
- ㈏
- ㈐
- ㈑
임을 보이면 족하다.
우선, ㈎의 경우는
인데, 이므로 이다.
㈏의 경우, 임의의 를 고르면, ㈎에 의하여 이므로 이다.
㈐의 경우, 임의의 를 고르자. 그렇다면, ㈎에 의하여 이므로, 이다.
㈑의 경우, 임의의 를 고르자. 그렇다면, ㈎에 의하여 이므로, 이다.
Remove ads
역사
이 정리의 이름은 증명 과정에서 와 의 번갈아 가는 군의 작용을 탁구에서 탁구공을 양 선수가 번갈아서 치는 것에 빗댄 것이다.
탁구 정리는 펠릭스 클라인이 19세기 말에 클라인 부분군을 연구하기 위하여 최초로 사용하였다. 이후 자크 티츠 등이 이 정리의 기법을 다시 사용하였다.
예
요약
관점
에서,
로 생성되는 부분군을 생각하자. 와 는 각각 무한 차수의 원소이다. (즉, 이 되는 는 밖에 없으며, 의 경우도 마찬가지이다.) 사실,
이다. 이제, 는 위에 선형 변환으로 작용한다.
로 잡으면,
임을 쉽게 확인할 수 있다. 따라서, 탁구 정리에 의하여 은 2개의 원소로 생성되는 자유군이다.
Remove ads
같이 보기
외부 링크
- Cook, Mary (2016년 4월 29일). “The ping-pong lemma” (PDF) (영어).
- “Ping-pong lemma”. 《Groupprops》 (영어).
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads