상위 질문
타임라인
채팅
관점
파동 방정식
위키백과, 무료 백과사전
Remove ads
물리학과 수학에서 파동 방정식(波動方程式, wave equation)은 일반적인 파동을 다루는 2차 편미분 방정식이다. 음파와 전자기파, 수면파 등을 다루기 위하여 음향학, 전자기학, 유체역학 등 물리학의 여러 분야에 등장한다. 양자역학에서 위치 에너지가 없는 경우 파동 함수는 파동 방정식을 따른다.


개요
요약
관점
파동 방정식은 에 대한 선형 쌍곡 편미분 방정식으로, 다음과 같다.
여기서 는 파동의 속도를 나타내는 매개변수다. 공기중을 진행하는 음파의 경우에는 대략 300 m/s이고, 이 속도를 음속(音速)이라 부른다. 현의 진동의 경우 는 다양한 값을 가질 수 있다. 는 시각 , 위치 에서의 파동의 진폭을 나타내는 함수다. 음파의 경우 진폭은 그곳에서의 공기의 압력이며, 진동하는 현의 경우엔 기준 위치에서부터의 변위를 나타낸다. 파동의 종류에 따라 는 스칼라 또는 벡터일 수 있다. 는 위치 에 대한 라플라스 연산자이다.
기본적인 파동 방정식은 선형 미분 방정식이다. 따라서 서로 다른 두 파동의 결합은 단순히 두 파의 더한 것과 같다. 또한 파동을 분석하기 위해 파를 성분별로 나누어도 된다. 푸리에 변환을 이용해 파동은 사인함수들로 쪼개어질 수 있고, 이 방법은 파동방정식을 분석하는 데 유용하다.
축 방향으로 늘어선 1차원 (현)의 경우, 위 식은 다음과 같다.
2차원에선 다음과 같다.
식의 상수를 주파수에 따른 변수로 생각해 더 복잡하고 실제적인 파동방정식을 만들 수 있다. 이때의 방정식은 비선형이 된다.
Remove ads
역사
현악기의 떨리는 현의 파동의 문제를 연구하기 위해 장 르 롱 달랑베르, 레온하르트 오일러, 다니엘 베르누이, 조제프루이 라그랑주 등이 연구하였다.
같이 보기
![]() |
이 글은 과학에 관한 토막글입니다. 여러분의 지식으로 알차게 문서를 완성해 갑시다. |
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads