Archimedde

From Wikipedia, the free encyclopedia

Archimedde
Remove ads

Archimede (gr. ᾿Αρχιμήδης, lat. Archimedes) matemàtico e fìxico siracusàn (Siracusa 287 - 212 a. C.).

ZE-P
Sta paggina chie a l'è scrita in zeneize, co' ina grafia tipo quella do Prian do 1745
Thumb
In dipinto in sciâ mòrte de Archimêde
Thumb
Archimēdous Panta sōzomena, un tratâto de l'anno 1615
Remove ads

Vitta

O l'é stæto un di ciù gren matematichi de l'antighitæ. Probabilmente allevo de l'Euclide, o compì foscia un viægio in Egitto, studiando a Lusciandria; o tornò da pœu a Siracusa, dov'o scrisse a ciu gran parte de so œuvie. Chì o moì, amaççao, se dixe, da 'n sordatto roman into sacco da çittæ (212 a. C.), alliâ de Cartagine; e a-a difeisa de Siracusa se dixe che l'Archimede o cooperesse con di geniæ ritrovæ scientifichi e macchine de guæra ("spegi ustoi", etc.). A lezendia a vœu che o sordatto o gh'inzonzesse ciu votte de seguîlo da-o console; che l'Archimede, asciorto inte 'n calcolo, o no o stesse a sentî e che o sordatto alloa, irao, o-o trafizzesse.

I œuvie de l'Archimede, a quanto pâ, no fun mai arecugeite inte 'n corpo unico; arcuñe de queste scenton fin da-i tempi antighi; atre fun tradute in latin into Medioevo; into Renascimento, riçercæ attivamente, fun pubricæ segge in verscioin (Federico Commandino, 1558) segge into testo grego (Baxilea 1544) e diligentemente studiæ da quelli che fun i incomençatoî e costruttoî do calcolo infiniteximâ, ch'o pâ quindi, inte 'n çerto senso, comme a logica continuaçion di studdi de l'Archimede (pe quante i metodi infiniteximæ dœuviæ da l'Archimede, contegnui into Mettodo, foisan a liatri sconosciui).

Remove ads

I œuvie matematiche

E prinçipæ œuvie matematiche de l'Archimede che n'en pervegnue son:

  • Quadratua da parabola: in questa l'Archimede o dimostra con varri metodi che "l'area do segmento parabolico a vâ 2/3 de l'area do triangolo circoscrito ch'o g'ha un lao coincidente co-a corda".
  • Da sfea e do cilindro, in 2 libbri: into primmo libbro se dà l'area da superfiçie sferica e o volumme da sfea, into segondo libbro son afrontæ di argomenti ciu diffiçili; l'é pres. risolto o problema (de terço grao) de "taggiâ una sfea inte doe parte con un cian, in moddo che i doi segmenti da sfea seggian tra lô inte un rapporto dæto".
  • De spiræ, inta quæ Archimede o dà pe-a primma votta 'na definiçion de moto rettilinio uniforme, de moto circolâ uniforme e da so compoxiçion.
  • Di conoidi e di sferoidi: area de l'ellisse, volumme de l'ellissoide e do paraboloide riondo.
  • Mezua do circolo: a contegne a primma determinaçion do valô de π, rapporto tra e longheççe de 'na circonferença e do so diametro.
  • L'ainaio, inta quæ Archimede o se propon de contâ o numero di gren d'æña che impieivan una sfea avente pe centro o Sô e zonzente scin a-e stelle fisse; in quest'œuvia l'Archimede, pe-o primmo, o l'ha tentao una determinaçion do diametro do disco solâ trovando, con un inzegnoxiscimo mettodo, che "o diametro do Sô o l'é meno de 90°/164 e o l'é ciu de 90°/200", o l'é, saiv'a dî, compreiso tra 33′ e 27′: in effetti o diametro angolâ do sô o varia tra 32′ 36″ (a-o perigeo, primmi de zenâ) e 31′32″ (a l'apogeo, primmi de luggio).
  • o Metodo (ò "Inandiamento"), scoverto into 1906 da J. H. Heiberg inte 'n manoscrito de Costantinopoli do sec. 10°: importantiscimo perché, mentre inte precedente œuvie l'Archimede o dœuvia sempre di procedimenti dimostrativi rigoroxi (in genere dimostraçioin pe assurdo), che no svelan i "mezi de scoverta" (metodi euristeghi) da lê adœuviæ in realtæ inta riçerca, o Metodo o ne rivela che Archimede o dœuviava inte so riçerche un veo e proprio procedimento de "integraçion", saiv'a dî de suddivixon, pres., de un'area, inte di infinii segmenti ò de 'n volumme inte de infinie superfiçie ciañe soviaposte, in tutto scimmili a-o mettodo di indivixibili de Bonaventura Cavalieri. In Archimede o metodo o l'aveiva aspetto meccanico, in quante e figue (pres., ciañe) vegnivan inmaginæ pesanti, decomposte in striscette pesanti concentrabili into proppio baricentro. Comme metodo dimostrativo l'Archimede o dœuviava quello de esaostion, ideao da Eudosso.
Remove ads

Fondamenti de statica e de idrostatica

Partindo da premesse çerte, con procedimento deduttivo a-a mainea de Euclide, Archimede o pose, in forma aotonoma ciæa e rigorosa, i fondamenti da statica e de l'idrostatica (prinçipio da leva, a propoxito do quæ se sole attribuî a l'Archimede a frase "dæme un ponto d'apoggio e sollevió o mondo"; spinta idrostatica, v. oltre). a l'Archimede l'é dovua a noçion de peiso specifico e, pâ, l'ideaçion de l'areometro. O l'inventò o paranco, a via sença fin e a cocleavia d'Archimede).

  • Prinçipio de Archimede: un corpo immerso inte 'n fluido in quete o l'é soggetto a una força diretta verso l'âto (spinta de Archimede) dovua a-e prescioin eserçitæ in sce-o corpo da-o fluido, pâ a-o peiso do fluido mesciao e applicâ into centro de gravitæ de quest'urtimo. Indicæ con ρc e ρl a denscitæ do corpo e quella do liquido, con g l'acceleraçion de gravitæ, con V o volumme do corpo, questo o l'é sottoposto complescivamente a-a força F = V(ρc − ρl)g.
  • Bança de Archimede: dispoxitivo, dito ascì bança idrostatica, anallogo a una bança ordinaia, ch'a serve a mezuâ a spinta de Archimede che un corpo o riçeive se immerso inte 'n fluido e quindi a mezuâ ascì a denscitæ do corpo relativamente a-o fluido ò, se questa a l'é nota, o volumme do corpo in question.
  • Postulao de Archimedede Eudosso-Archimede): dæti doi segmenti qualunque a, b, tæ che a ‹ b, existe un murtiplo na de a pe-o quæ o l'é na > b; o postulao o l'é indipendente da-i precedenti, inta sistemaçion dæta da David Hilbert a l'asciomatica euclidea.
  • Spirâ de Archimede

Colegaménti esterni

Ciù informaçioìn Contròllo de outoritæ ...
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads