Neeuklidinė geometrija
From Wikipedia, the free encyclopedia
Remove ads
Neeuklidinė geometrija – plačiąja prasme, bet kokia geometrija, kuri skiriasi nuo Euklidinės (parabolinės) geometrijos.[1] Tačiau tradiciškai terminas „neeuklidinė geometrija“ yra labiau taikomas siauresne prasme ir apima tik dvi geometrines sistemas: Lobačevskio hiperbolinę geometriją ir į ją panašią sferinę geometriją arba (Rymano geometriją ir elipsinę geometriją).

Neeuklidinėse geometrijose kreivės yra naudojamos kaip tiesės Euklidinėje geometrijoje. Nulinis kreivumas atitinka Euklidinę geometriją, teigiamas kreivumas - sferinę, Riemanno arba elipsinę geometriją, o neigiamas kreivumas – Lobačevskio geometriją.
Remove ads
Trikampiai neeuklidinėse geometrijose

Neeuklidinėse geometrijose kaip ir Euklidinėse galima nubrėžti trikampius, tačiau skiriasi jų savybės. Neeuklidinėse geometrijose nėra nei stačių kampų, nei nevienodų panašių trikampių. Trikampio vidinių kampų suma yra lygi 180° tik Euklidinėje geometrijoje, bet ne kitose.
Remove ads
Šaltiniai
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads