Нормална распределба

From Wikipedia, the free encyclopedia

Нормална распределба
Remove ads

Нормална распределба или Гаусова распределбаверојатносна распределба на случајна големина со препознатлива форма во облик на звоно. Нормалната распределба ја открил германскиот математичар Карл Ф. Гаус, а називот „нормална распределба“ го дал Галтон. Во Европа, тој е познат како Гаусова распределба, додека во англосаксонските земји е познат како нормална распределба.[1]

Кратки факти Запис, Параметри ...
Thumb
Вкупната плоштина под кривата изнесува 1. X е нормална случајна променлива со кумулативна функција на распределба F (X), а a и b се две можни вредности на X, при што а < b.
Remove ads

Опис на нормалната распределба

Нормалната распределба блиску го апроксимира веројатносната распределба со широк интервал на случајни променливи. Има бројни примери за нормална распределба: вкупните продажби на производство, моделите на цените на акциите и слично. Нормалната случајна променлива X претставува непрекината променлива која зема бесконечен број на можни вредности од -∞ до +∞, со функција која го претставува распределбата на веројатноста во дадениот интервал. Распределбата на средините на примероците се приближуваат кон нормална распределба, ако се работи за големина на примерок.

Функција на густина на веројатност на нормална распределба

Нормалната распределба на веројатноста претставува големо множество на распределби, секој со единствена спецификација за параметрите µ и σ.2 [2]

Својства на нормални распределби

Средина на случајната променлива е µ

• Варијансата на случајната променлива е σ2

• Доколку ја знаеме средината и варијансата, можеме да ја дефинираме нормалната распределба со користење на ознаката

Коефициентот на асиметрија (накосеност) α3=0, а коефициентот на зашиленост α4=3 • Функцијата на густина на веројатноста е унимодална (М=Ме=Мо) Нормалната распределба е симетричен. Различните централни тенденции се прикажуваат со разликите во µ. Разликите во σ2 резултираат со функции на густина со различни ширини. Средината на распределбата дава мерка на централна локација, а варијансата дава мерка на дисперзијата околу средината.[3] Важна одлика на нормалната распределба е тоа што е целосно определена од нејзините први два моменти: средната вредност и варијансата.[2]

Кумулативна функција на нормална распределба

Тоа е плоштината под нормалната функција на густината на веројатноста на лево од x. Вкупната плоштина под кривата изнесува 1. X е нормална случајна променлива со кумулативна функција на распределба F (X), а a и b се две можни вредности на X, при што а < b.

Remove ads

Стандардна нормална распределба

Thumb
Стандардна нормална распределба

За да може да се врши споредба на распределбите, потребно е нормалната распределба да има единечен облик, односно облик кој не зависи од параметрите µ и σ2. Нормалната распределба која се одликува со средна вредност еднаква на нула и варијанса еднаква на еден (µ=0, σ2 =1) се нарекува стандардна нормална распределба. Оваа распределба е совршено симетрична, а нејзината средна вредност е еднаква на модусот и на медијаната (чија веројатност за случување изнесува 50%). Притоа, 95% од нормалната распределба ги опфаќа вредностите од две стандардни отстапувања над и под средната вредност, 66% од вредностите се наоѓаат во интервалот од едно стандардно отстапвуање под и над средната вредност, а 99% од вредностите се наоѓаат во интервалот од три стандардни отстапувања над и под средната вредност.[4]

Z ~

Можеме да ја добиеме веројатноста за која било нормално распределена случајна променлива со тоа што ќе ја претвориме во случајна променлива со стандардна нормална распределба Z. Секогаш постои директна зависност меѓу било која нормално распределена променлива и Z, а тоа се постигнува со трансформацијата:

Параметри на стандардната нормална распределба:

Стандардната нормална распределба се одликува со следниве параметри:[5] • Аритметичката средина µ = 0 • Варијанса σ2 = 1 • Коефициент на асиметрија α3=0, што значи дека распределбата е едномодална и идеално симетрична. • Коефициентот на зашиленост α4=3, што значи дека распределбата има нормална висина.

Кумулативна функција на стандардна нормална распределба:

Вредностите на кумулативната функција на распределба за негативни вредности на Z можат да се утврдат со користење на симетрија на функцијата на густината на веројатноста.

Remove ads

Наводи

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads