Тау-честичка
From Wikipedia, the free encyclopedia
Remove ads
Тау (τ), наречена и тау-лептон, тау-честичка или тауон — елементарна честичка слична на електронот, со негативен електричен полнеж и спин од 1⁄2. Заедно со електронот, мионот, и трите неутрина, е лептон. Како и сите други елементарни честички со половичен спин, тау-честичката има своја античестичка со спротивен полнеж но еднаква маса и спин, што во случајот со тау-честичката е антитау (или уште наречена и позитивно тау). Тау-честичките се обележуваат со
τ−
а антитау со
τ+
.
Тау-лептоните имаат животен век од 2,9⋅10-13 с и маса од 1.776,82 MeV/c2 (споредено со 105,7 MeV/c2 за миони и 0,511 MeV/c2 за електрони). Бидејќи нивните заемнидејства се многу слични со оние на електроните, тау може да се смета како потешка верзија од електронот. Поради нивната поголема маса, тау-честичките не испуштаат толку многу закочно зрачење како електроните; следствено, тие се потенцијално попродорни, многу повеќе од електроните.
Поради нивниот краток животен век, опсегот на тау воглавно зависи од нивната должина на распаѓање, што е премногу мало за да може да се забележи закочното зрачење. Нивната продорна моќ се појавува само при ултраголема брзина и енергија (енергии над петаелектронволти), кога временската дилатација ја издолжува должината на изминатиот пат.[4]
Како и во случајот со сите останати наелектр5изирани лептони, тау има и соодветно тау-неутрино, кое се означува како ντ.
Remove ads
Историја
Тау бил пронајден во 1971 година од страна на Јунг-Су Цаи .[5] Обезбедувајќи ја теоријата за ова откритие, тау бил откриен во низа експерименти меѓу 1974 и 1977 година од страна на Мартин Луис Перл со неговите колеги во Стенфордскиот линиски забрзувачки центар (SLAC) и групата на Берклиевата лабораторија (LBL).[2] Нивната опрема се состоела од тогашниот нов SLAC-ов
e+
–
e−
судирачки прстен, наречен SPEAR, и LBL магнетениот детектор. Тие имале способност да ги детектираат и разликуваат лептоните, хадроните и фотоните. Тие не ги откриле директно тау-честичките, туку откриле аномални настани:
Откриеби се 64 настани од обликот:
e+
+
e−
→
e±
+
μ∓
+ најмалку две неоткриени честички- за кои не постои конвенционално објаснување.
Потребата да постојат најмалку две неоткриени честички била прикажана со неможноста да се зачува енергијата и импулсот со само една честичка. Сепак, не се откриени ниту други миони, електрони, фотони или хадрони. Било предложено овој настан да е производство и последователно распаѓање на нов пар од честички:
e+
+
e−
→
τ+
+
τ−
→
e±
+
μ∓
+ 4
ν
Ова беше тешко да се потврди, бидејќи енергијата за производство на парот
τ+
τ−
е слична со енергијата на прагот за производство на D-мезонот. Масата и спинот на тау подоцна биле утврдени со работа извршена во DESY-Хамбург со двокракиот спектрометар (DASP) и во SLAC-Стенфорд со директниот електронски бројач (DELCO) при SPEAR.
Симболот τ бил изведен од грчкиот τρίτον (тритон, што значи „трето“ на англиски јазик), бидејќи бил откриен трет наелектризиран лептон.[6]
Мартин Луис Перл ја сподели Нобеловата награда за физика од 1995 со Фредерик Рајнес. На Рајнес наградата му е доделена за неговиот придонес за експериментално откривање на неутриното.
Remove ads
Распад на тау-честичките

Тау е единствениот летон кој може да се распаѓа во хадрони - другите лептони немаат доволна маса. Како и другите начини на распаѓање на тау, хадронскиот распад се одвива преку слабото заемодејство.[7]
Распределувањето на доминантните хадронски тау-распади се[3]:
- 25.52% за распаѓање во наелектризиран пион, неутрален пион и тау-неутрино;
- 10.83% за распаѓање во наелектризиран пион и тау-неутрино;
- 9.30% за распаѓање во наелектризиран пион, два неутрални пиони и тау-неутрино;
- 8.99% за распаѓање во три наелектризирани пиони (од кои два имаат истиот електричен полнеж) и тау-неутрино;
- 2.70% за распаѓање во три наелектризирани пиони (од кои два го имаат истиот електричен полнеж), неутрален пион и тау-неутрино;
- 1.05% за распаѓање во три неутрални пиони, наелектризирант пион и тау-неутрино.
Севкупно, тау-лептонот ќе се распаѓа хадронски приближно 64,79% од времето.
Бидејќи бројот на тау-лептонскиот број е зачуван при слаби распади, тау-неутриното секогаш се создава при тау-распади.[7]
Односот на разгранувањето на лептонските тау честички е[3]:
- 17.82% за распаѓање во тау-неутрино, електрони и електронско антинеутрино;
- 17.39% за распаѓање во тау-неутрино, мион и мионско антинеутрино.
Сличноста на вредностите на двата разгранувачки коефициенти е последица на универзалноста на лептонот.
Remove ads
Егзотични атоми
Предвидено е дека тау-лептонот може да создава егзотични атоми како другите наелектризирани субатомски честички. Еден од таквите, наречен тауонониум аналогно на миониум, се состои од антитауон и електрон:
τ+
e−
.[8]
Другиот е атом е ониум
τ+
τ−
наречен „вистински тауониум“ и е тешко да се забележи поради исклучителниот краток животен век на тау при ниски (нерелативистички) енергии потребни за да се создаде овој атом. Неговото откривање е важно за квантната електродинамика.[8]
Поврзано
- Коидева равенка
Наводи
Надворешни врски
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads