Тензор
From Wikipedia, the free encyclopedia
Remove ads
Тензор е вектор на одреден векторски простор и како математичка структура претставува обопштување на векторот. Тензорските величини се физички величини чија вредност зависи и од координатата. Математички се претставуваат со матрица.
Тензорот е физичка величина која е поврзана со еластичните, деформабилни особини на супстанците. Со тензорки величини се опишуваат векторските величини во анизотропна средина, како што е средината кај некубичните кристали. Тензорски величини се моментот на инерција, топлотната спроводливост, електричната спроводливост, дифузниот коефициент, показателот на прекршување и други.[1]
Тензорското сметање е област на математиката која ги проучува тензорите и операциите со нив. Тензорското сметање ги опфаќа тензорската алгебра и тензорската анализа. Се применува во геометријата, теориската физика, механиката и применетата механика. Заради својата едноставна симболика влегло како апарат во низа современи технички дисциплини.
Remove ads
Историски преглед
Зборот тензор го вовел Вилијам Роуан Хамилтон во 1846 година и со него ги опишал операциите норма во Клифордовата алгебра.
Дефиниција
Формална дефиниција:
- Тензор во векторскиот простор над полето е линеарно пресликување кое за домен го зема производот на векторскиот простор пати и пати производот на неговиот дуален векторски простор . Просторот на сите тензори со степен е .
Дефиниција на тензор при трансформација на полилинеарен функционал од еден во друг базис.
- Тензор е полилинеарен функционал зададен со систем од броеви, каде и се елементи на матрицата на премин и од биортогонални базиси во нови базиси под услов да важи .[2]
Remove ads
Примери
- Тензор со само една компонента е скалар и претставува тензор со ранг 0. Скаларот е ист во сите базиси.
Наводи
Надворешни врски
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads