Top Qs
Tijdlijn
Chat
Perspectief
Eenheidsmatrix
Van Wikipedia, de vrije encyclopedie
Remove ads
In de lineaire algebra is een eenheidsmatrix of identiteitsmatrix een vierkante matrix, waarvan de hoofddiagonaal uitsluitend uit enen bestaat en alle elementen die niet op de hoofddiagonaal liggen nul zijn. De eenheidsmatrix staat in de lineaire algebra gelijk aan de identieke afbeelding. Een eenheidsmatrix wordt genoteerd met het symbool .
Remove ads
Definitie
Een eenheidsmatrix, genoteerd als , van identity, identiteit, is een -matrix waarvoor geldt:
- en voor
Een andere notatie hiervoor is , de zogenaamde kroneckerdelta.
Een eenheidsmatrix is dus een speciaal geval van een diagonaalmatrix, dus ook van een symmetrische matrix.
Remove ads
Voorbeelden
Voorbeelden van eenheidsmatrices zijn achtereenvolgens de -, -, - en -eenheidsmatrix:
Remove ads
Basiseigenschappen
Voor elke identiteitsmatrix gelden de volgende elementaire eigenschappen:
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads