ਟੌਪੌਲੌਜੀਕਲ ਸਪੇਸ

From Wikipedia, the free encyclopedia

Remove ads

ਸ਼ਬਦ ਟੌਪੌਲੌਜੀ, ਟੌਪੌਲੌਜੀ ਕਹੇ ਜਾਣ ਵਾਲੇ ਗਣਿਤ ਦੇ ਖੇਤਰ ਪ੍ਰਤਿ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਗਣਿਤਿਕ ਕੇਂਦਰੀ ਵਿਚਾਰ ਵੱਲ ਵੀ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ। ਗੈਰਜਰੂਰੀ ਤੌਰ 'ਤੇ, ਇੱਕ ਟੌਪੌਲੌਜੀ ਦੱਸਦੀ ਹੈ ਕਿ ਕਿਸੇ ਸੈੱਟ ਦੇ ਐਲੀਮੈਂਟ ਇੱਕ ਦੂਜੇ ਪ੍ਰਤਿ ਸਥਾਨਿਕ ਤੌਰ 'ਤੇ ਕਿਵੇਂ ਸਬੰਧਤ ਹਨ। ਇੱਕੋ ਸੈੱਟ ਵੱਖਰੀਆਂ ਵੱਖਰੀਆਂ ਟੌਪੌਲੀਜੀਆਂ ਰੱਖ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, ਵਾਸਤਵਿਕ ਰੇਖਾ, ਕੰਪਲੈਕਸ ਪਲੇਨ, ਅਤੇ ਕੈਨਟੋਰ ਸੈੱਟ ਨੂੰ ਵੱਖਰੀਆਂ ਟੌਪੌਲੀਜੀਆਂ ਵਾਲੇ ਇੱਕੋ ਸੈੱਟ ਦੇ ਰੂਪ ਵਿੱਚ ਸੋਚਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਰਸਮੀ ਤੌਰ 'ਤੇ, ਮੰਨ ਲਓ X ਕੋਈ ਸੈੱਟ ਹੈ ਅਤੇ τ ਇਸ X ਦੇ ਸਬਸੈੱਟਾਂ ਦਾ ਪਰਿਵਾਰ ਹੈ। ਫੇਰ τ ਨੂੰ X ਉੱਤੇ ਇੱਕ ਟੌਪੌਲੌਜੀ ਕਿਹਾ ਜਾਵੇਗਾ ਜੇਕਰ:

  1. ਖਾਲੀ ਸੈੱਟ ਅਤੇ X ਦੋਵੇਂ ਹੀ τ ਦੇ ਐਲੀਮੈਂਟ ਹੋਣ
  2. τ ਦੇ ਐਲੀਮੈਂਟਾਂ ਦਾ ਕੋਈ ਵੀ ਸੰਘ (ਯੂਨੀਅਨ) τ ਦਾ ਇੱਕ ਐਲੀਮੈਂਟ ਹੋਵੇ
  3. τ ਦੇ ਬਹੁਤ ਸਾਰੇ ਐਲੀਮੈਂਟਾਂ ਦੀ ਸੀਮਤ ਤੌਰ 'ਤੇ ਕੋਈ ਵੀ ਕਾਟ (ਇੰਟਰਸੈਕਸ਼ਨ) ਵੀ τ ਦਾ ਇੱਕ ਐਲੀਮੈਂਟ ਹੋਵੇ।

ਜੇਕਰ τ ਕੋਈ X ਉੱਤੇ ਟੌਪੌਲੌਜੀ ਹੋਵੇ, ਤਾਂ ਜੋੜੇ (X, τ) ਨੂੰ ਟੌਪੌਲੌਜੀਕਲ ਸਪੇਸ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਧਾਰਨਾXτ ਵਿਸ਼ੇਸ਼ ਟੌਪੌਲੌਜੀ τ ਨਾਲ ਸੰਪਨ ਕਿਸੇ ਸੈੱਟ X ਨੂੰ ਲਿਖਣ ਲਈ ਵਰਤੀ ਜਾ ਸਕਦੀ ਹੈ।

τ ਦੇ ਮੈਂਬਰਾਂ ਨੂੰ ਓਪਨ (ਖੁੱਲੇ) ਸੈੱਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜੋ X ਵਿੱਚ ਹੁੰਦੇ ਹਨ। X ਦੇ ਕਿਸੇ ਸਬਸੈੱਟ ਨੂੰ ਕਲੋਜ਼ਡ (ਬੰਦ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜੇਕਰ τ ਵਿੱਚ ਇਸ ਦੇ ਪੂਰਕ ਵੀ ਹੋਣ (ਯਾਨਿ ਕਿ ਇਸ ਦੇ ਪੂਰਕ ਖੁੱਲੇ ਹੋਣ)। X ਦਾ ਕੋਈ ਸਬਸੈੱਟ ਖੁੱਲਾ, ਬੰਦ, ਦੋਵੇਂ (ਕਲੋਪਨ ਸੈੱਟ), ਜਾਂ ਦੋਵੇਂ ਨਹੀਂ ਹੋ ਸਕਦਾ ਹੈ। ਖਾਲੀ ਸੈੱਟ ਅਤੇ X ਆਪਣੇ ਆਪ ਵਿੱਚ ਹਮੇਸ਼ਾ ਦੋਵੇਂ ਗੁਣਾਂ ਬੰਦ ਅਤੇ ਖੁੱਲੇ ਵਾਲੇ ਹੁੰਦੇ ਹਨ। ਬਿੰਦੂ x ਰੱਖਣ ਵਾਲਾ ਕੋਈ ਖੁੱਲਾ ਸੈੱਟ x ਦਾ ਗਵਾਂਢੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਇੱਕ ਟੌਪੌਲੌਜੀ ਵਾਲੇ ਕਿਸੇ ਸੈੱਟ ਨੂੰ ਇੱਕ ਟੌਪੌਲੌਜੀਕਲ ਸਪੇਸ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads