ਡਾਇਮੈਂਸ਼ਨ (ਵੈਕਟਰ ਸਪੇਸ)
From Wikipedia, the free encyclopedia
Remove ads
ਗਣਿਤ ਵਿੱਚ, ਕਿਸੇ ਵੈਕਟਰ ਸਪੇਸ V ਦੀ ਡਾਇਮੈਂਸ਼ਨ, ਇਸਦੀ ਅਧਾਰ ਫੀਲਡ ਉੱਪਰ V ਦੇ ਇੱਕ ਅਧਾਰ ਦੀ ਕਾਰਡੀਨਲਟੀ (ਯਾਨਿ ਕਿ, ਵੈਕਟਰਾਂ ਦੀ ਗਿਣਤੀ) ਹੁੰਦੀ ਹੈ।[1] ਇਸਨੂੰ ਕਦੇ ਕਦੇ ਹਾਮਲ ਡਾਇਮੈਂਸ਼ਨ (ਜੌਰਜ ਹਾਮਲ ਦੇ ਨਾਮ ਤੋਂ) ਜਾਂ ਅਲਜਬ੍ਰਿਕ ਅਯਾਮ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜੋ ਅਯਾਮ ਦੀਆਂ ਹੋਰ ਕਿਸਮਾਂ ਤੋਂ ਫਰਕ ਰਹੇ।
ਹਰੇਕ ਵੈਕਟਰ ਸਪੇਸ ਲਈ, ਇੱਕ ਬੇਸਿਸ [lower-alpha 1] ਹੁੰਦਾ ਹੈ, ਅਤੇ ਕਿਸੇ ਵੈਕਟਰ ਸਪੇਸ ਦੇ ਸਾਰੇ ਬੇਸਿਸ ਇੱਕ-ਸਮਾਨ ਤੱਤਾਂ ਦੀ ਗਿਣਤੀ; [lower-alpha 2] ਰੱਖਦੇ ਹਨ, ਜਿਸਦੇ ਨਤੀਜੇ ਦੇ ਤੌਰ ਤੇ, ਕਿਸੇ ਵੈਕਟਰ ਸਪੇਸ ਦੀ ਡਾਇਮੈਨਸ਼ਨ ਨਿਰਾਲੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦੀ ਹੈ। ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ V, ਸੀਮਤ-ਅਯਾਮੀ ਹੁੰਦੀ ਹੈ ਜੇਕਰ V ਦੀ ਡਾਇਮੈਨਸ਼ਨ ਸੀਮਤ ਹੋਵੇ, ਅਤੇ ਅਸੀਮਤ-ਅਯਾਮੀ ਹੈ ਜੇਕਰ ਇਸਦਾ ਅਯਾਮ ਅਨੰਤ ਹੋਵੇ।
ਫੀਲਡ F ਉੱਤੇ ਵੈਕਟਰ ਸਪੇਸ V ਦੀ ਡਾਇਮੈਨਸ਼ਨ ਨੂੰ dimF(V) ਦੇ ਤੌਰ ਤੇ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ [V: F] ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸਨੂੰ "F ਉੱਤੇ V ਦੀ ਡਾਇਮੈਨਸ਼ਨ" ਪੜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਦੋਂ F ਨੂੰ ਸੰਦ੍ਰਭ ਤੋਂ ਅਦ੍ਰਿਸ਼ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੋਵੇ ਤਾਂ, dim(V) ਖਾਸਕਰ ਕੇ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।
Remove ads
ਉਦਾਹਰਨਾਂ
ਵੈਕਟਰ ਸਪੇਸ R3, ਇੱਕ ਮਿਆਰੀ ਅਧਾਰ ਦੇ ਤੌਰ ਤੇ ਇਹ ਅਯਾਮ ਰੱਖਦਾ ਹੈ,
ਅਤੇ ਇਸਲਈ, ਸਾਡੇ ਕੋਲ dimR(R3) = 3 ਹੁੰਦੀਆਂ ਹਨ। ਹੋਰ ਸਧਾਰਨ ਤੌਰ ਤੇ, dimR(Rn) = n, ਅਤੇ ਹੋਰ ਵੀ ਜਿਆਦਾ ਸਧਾਰਨ ਤੌਰ ਤੇ, ਕਿਸੇ ਫੀਲਡ F ਵਾਸਤੇ dimF(Fn) = n ਹੁੰਦੀਆਂ ਹਨ।
ਕੰਪਲੈਕਸ ਨੰਬਰ C ਇੱਕ ਵਾਸਤਵਿਕ ਅਤੇ ਇੱਕ ਕੰਪਲੈਕਸ ਵੈਕਟਰ ਸਪੇਸ, ਦੋਵੇਂ ਹੀ ਹੁੰਦੇ ਹਨ; ਇਸਲਈ ਸਾਡੇ ਕੋਲ
dimR(C) = 2 ਅਤੇ dimC(C) = 1 ਹੁੰਦੇ ਹਨ। ਇਸਲਈ ਅਯਾਮ ਬੇਸਿਸ ਫੀਲਡ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।
ਡਾਇਮੈਨਸ਼ਨ 0 ਵਾਲੀ ਇੱਕੋ ਇੱਕ ਵੈਕਟਰ ਸਪੇਸ {0} ਹੁੰਦੀ ਹੈ, ਜੋ ਇਸਦੇ 0 ਤੱਤ ਦੇ ਨਾਲ ਬਣੀ ਵੈਕਟਰ ਸਪੇਸ ਹੁੰਦੀ ਹੈ।
Remove ads
ਤੱਥ
ਜੇਕਰ W ਕੋਈ V ਦੀ ਲੀਨੀਅਰ ਸਬ-ਸਪੇਸ ਹੋਵੇ, ਤਾਂ dim(W) ≤ dim(V) ਹੁੰਦੀ ਹੈ। ਇਹ ਦਿਖਾਉਣ ਲਈ ਕਿ ਦੋ ਸੀਮਤ-ਅਯਾਮੀ ਵੈਕਟਰ ਸਪੇਸਾਂ ਬਰਾਬਰ ਹੁੰਦੀਆਂ ਹਨ, ਅੱਗੇ ਲਿਖੀ ਕਸੌਟੀ ਅਕਸਰ ਵਰਤੀ ਜਾਂਦੀ ਹੈ: ਜੇਕਰ V ਇੱਕ ਸੀਮਤ-ਅਯਾਮੀ ਵੈਕਟਰ ਸਪੇਸ ਹੋਵੇ, ਅਤੇ W, ਅਯਾਮ(W) = ਅਯਾਮ(V) ਨਾਲ, V ਦੀ ਇੱਕ ਲੀਨੀਅਰ ਸਬਸਪੇਸ ਹੈ।
ਨੋਟਸ
ਹਵਾਲੇ
ਬਾਹਰੀ ਲਿੰਕ
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads