ਡੀ ਬ੍ਰੋਗਲਾਇ-ਬੋਹਮ ਥਿਊਰੀ
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
ਡੀ-ਬ੍ਰੋਗਲਿ-ਬੋਹਮ ਥਿਊਰੀ, ਜਿਸ ਨੂੰ ਪਿਲੌਟ-ਤੰਰਗ ਥਿਊਰੀ, ਬੋਹਮੀਅਨ ਮਕੈਨਿਕਸ, ਬੋਹਮ ਜਾਂ ਬੋਹਮ ਦੀ ਵਿਆਖਿਆ, ਅਤੇ ਕਾਰਣਾਤਮਿਕ ਵਿਆਖਿਆ ਦੇ ਨਾਮ ਤੋਂ ਵੀ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਕੁਆਂਟਮ ਥਿਊਰੀ ਦੀ ਇੱਕ ਵਿਆਖਿਆ ਹੈ। ਸਾਰੀਆਂ ਸੰਭਵ ਬਣਤਰਾਂ ਦੀ ਸਪੇਸ ਉੱਤੇ ਕਿਸੇ ਵੇਵ ਫੰਕਸ਼ਨ ਦੇ ਨਾਲ ਨਾਲ, ਇਹ ਇੱਕ ਅਜਿਹੀ ਵਾਸਤਵਿਕ ਬਣਤਰ ਨੂੰ ਵੀ ਸਵੈ-ਸਿੱਧ ਕਰਦੀ ਹੈ ਜੋ ਉਦੋਂ ਵੀ ਮੌਜੂਦ ਰਹਿੰਦੀ ਹੈ ਜਦੋਂ ਦੇਖੀ (ਪਰਖੀ) ਨਹੀਂ ਗਈ ਹੁੰਦੀ। ਬਣਤਰ ਦੀ ਵਕਤ ਉੱਤੇ ਉਤਪਤੀ (ਯਾਨਿ ਕਿ, ਸਾਰੇ ਕਣਾਂ ਦੀਆਂ ਪੁਜੀਸ਼ਨਾਂ ਦੀ ਬਣਤਰ ਜਾਂ ਸਾਰੀਆਂ ਫੀਲਡਾਂ ਦੀ ਬਣਤਰ) ਇੱਕ ਗਾਈਡਿੰਗ ਸਮੀਕਰਨ ਰਾਹੀਂ ਵੇਵ ਫੰਕਸ਼ਨ ਦੁਆਰਾ ਰੱਦ ਕਰ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ। ਵਕਤ ਉੱਤੇ ਵੇਵ ਫੰਕਸ਼ਨ ਦੀ ਉਤਪਤੀ ਸ਼੍ਰੋਡਿੰਜਰ ਦੀ ਇਕੁਏਸ਼ਨ ਦੁਆਰਾ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ। ਥਿਊਰੀ ਦਾ ਨਾਮ ਲੁਇਸ ਡੀ ਬ੍ਰੋਗਲੀ (1892–1987), ਅਤੇ ਡੇਵਿਡ ਬੋਹਮ (1917–1992) ਦੇ ਨਾਮ ਤੋਂ ਰੱਖਿਆ ਗਿਆ ਸੀ।
ਇਹ ਥਿਊਰੀ ਨਿਰਧਾਤਮਿਕ[1] ਅਤੇ ਸਪਸ਼ਟ ਤੌਰ 'ਤੇ ਗੈਰ-ਸਥਾਨਿਕ ਹੈ: ਕਿਸੇ ਵੀ ਕਣ ਦੀ ਵਿਲੌਸਿਟੀ ਅਜਿਹੀ ਗਾਈਡਿੰਗ ਸਮੀਕਰਨ ਦੇ ਮੁੱਲ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ, ਜੋ ਇਸਦੇ ਵੇਵ ਫੰਕਸ਼ਨ ਰਾਹੀਂ ਮਿਲਣ ਵਾਲ਼ੇ ਸਿਸਟਮ ਦੀ ਬਣਤਰ ਉੱਤੇ ਅਧਾਰਿਤ ਹੁੰਦੀ ਹੈ; ਜੋ ਸਿਸਟਮ ਦੀਆਂ ਬਾਊਂਡਰੀ ਸ਼ਰਤਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਹੁੰਦਾ ਹੈ, ਜੋ ਸਿਧਾਂਤਾਂ ਮੁਤਾਬਿਕ ਸਾਰੇ ਦਾ ਸਾਰਾ ਬ੍ਰਹਿਮੰਡ ਹੋ ਸਕਦਾ ਹੈ।
ਇਹ ਥਿਊਰੀ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਲਈ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਸਮਾਨ ਇੱਕ ਨਾਪ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦਾ ਨਤੀਜਾ ਦਿੰਦੀ ਹੈ, ਜੋ ਕੌਪਨਹਾਗਨ ਵਿਆਖਿਆ ਨਾਲ ਸਰਵ ਸਧਾਰਨ ਤੌਰ 'ਤੇ ਜੁੜੀ ਮਿਆਰੀ ਕੁਆਂਟਮ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਥਿਊਰੀ ਦੀ ਸਪਸ਼ਟ ਗੈਰ-ਸਥਾਨਿਕਤਾ ਨਾਪ ਸਮੱਸਿਆ ਨੂੰ ਹੱਲ ਕਰਦੀ ਹੈ, ਜੋ ਪ੍ਰੰਪਰਿਕ ਤੌਰ 'ਤੇ ਕੌਪਨਹਾਗਨ ਵਿਆਖਿਆ ਅੰਦਰ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀਆਂ ਵਿਆਖਿਆਵਾਂ ਦੇ ਪ੍ਰਸੰਗ ਨੂੰ ਸੌਂਪੀਆ ਜਾਂਦੀ ਹੈ।
ਬ੍ਰੋਗਲਾਇ-ਬੋਹਮ ਥਿਊਰੀ ਅੰਦਰ ਬੌਰਨ ਰੂਲ ਕੋਈ ਮੁਢਲਾ ਨਿਯਮ ਨਹੀਂ ਹੁੰਦਾ। ਸਗੋਂ, ਇਸ ਥਿਊਰੀ ਅੰਦਰ, ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਡੈੱਨਸਟੀ ਅਤੇ ਵੇਵ ਫੰਕਸ਼ਨ ਦਰਮਿਆਨ ਸੰਪਰਕ ਇੱਕ ਪਰਿਕਲਪਨਾ ਦਾ ਰੁਤਬਾ ਰੱਖਦਾ ਹੈ, ਜਿਸਨੂੰ ਕੁਆਂਟਮ ਸੰਤੁਲਨ ਪਰਿਕਲਪਨਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਵੇਵ ਫੰਕਸ਼ਨ ਨੂੰ ਨਿਯੰਤ੍ਰਨ ਕਰਨ ਵਾਲੇ ਅਧਾਰ (ਮੁਢਲੇ) ਸਿਧਾਂਤਾਂ ਤੋਂ ਅਤਿਰਿਕਤ ਹੁੰਦੀ ਹੈ।
ਇਹ ਥਿਊਰੀ ਇਤਿਹਾਸਿਕ ਤੌਰ 'ਤੇ ਡੀ ਬ੍ਰੋਗਲਾਇ ਦੁਆਰਾ 1920ਵੇਂ ਦਹਾਕੇ ਵਿੱਚ ਵਿਕਸਿਤ ਕੀਤੀ ਗਈ ਸੀ।, ਜੋ 1927 ਵਿੱਚ ਇਸਨੂੰ ਓਸ ਵਕਤ ਦੀ ਮੁੱਖਧਾਰਾ ਕੌਪਨਹਾਗਨ ਵਿਆਖਿਆ ਦੇ ਪੱਖ ਵਿੱਚ ਛੱਡਣ ਲਈ ਰਾਜ਼ੀ ਹੋ ਗਿਆ ਸੀ। ਡੇਵਿਡ ਬੋਹਮ, ਜੋ ਪ੍ਰਚਿੱਲਤ ਕੱਟੜਤਾ ਤੋਂ ਅਸੰਤੁਸ਼ਟ ਸੀ, ਨੇ 1952 ਵਿੱਚ ਡੀ ਬ੍ਰੋਗਲਾਇ ਦੀ ਪੀਲੌਟ ਵੇਵ ਥਿਊਰੀ ਦੀ ਪੁਨਰਖੋਜ ਕੀਤੀ। ਓਸ ਵੇਲੇ ਬੋਹਮ ਦੇ ਸੁਝਾਅ ਵਿਸ਼ਾਲ ਪੱਧਰ ਨੇ ਨਹੀਂ ਅਪਣਾਏ ਗਏ, ਜਿਸਦੇ ਕੁੱਝ ਕਾਰਣ ਉਹਨਾਂ ਸਮੱਗਰੀਆਂ ਨਾਲ ਸਬੰਧਤ ਸਨ, ਜੋ ਬੋਹਮ ਦੇ ਯਿਵਾ ਸਮਾਜਵਾਦੀ ਸੰਪਰਕਾਂ ਨਾਲ ਸਬੰਧਤ ਸਨ।[2] ਡੀ ਬ੍ਰੋਗਲਾਇ ਥਿਊਰੀ ਮੁੱਖਧਾਰਾ ਦੇ ਸਿਧਾਂਤਵਾਦੀਆਂ ਦੁਆਰਾ ਵੱਡੇ ਪੱਧਰ ਤੇ ਸਵੀਕਾਰ ਨਹੀਂ ਕੀਤੀ ਗਈ ਸੀ, ਜਿਸਦਾ ਜਿਅਦਾਤਰ ਕਾਰਣ ਇਸਦੀ ਸਪਸ਼ਟ ਗੈਰ-ਸਥਾਨਿਕਤਾ ਸੀ। ਡੇਵਿਡ ਬੋਹਮ ਦੇ ਕੰਮ ਤੋਂ ਬੈੱਲ ਦੀ ਖੋਜ ਰਾਹੀਂ ਬੈੱਲ ਦੀ ਥਿਊਰਮ (1964) ਪ੍ਰੇਰਿਤ ਹੋਈ ਅਤੇ ਉਸਦੀ ਅਗਲੀ ਹੈਰਾਨੀ ਸੀ ਕਿ ਜੇਕਰ ਥਿਊਰੀ ਦੀ ਸਪਸ਼ਟ ਗੈਰ-ਸਥਾਨਿਕਤਾ ਨੂੰ ਮਿਟਾਇਆ ਜਾ ਸਕੇ। 1990 ਤੋਂ ਬਾਦ, ਬ੍ਰੋਗਲਾਇ-ਬੋਹਮ ਥਿਊਰੀ ਪ੍ਰਤਿ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਸ਼ਾਖਾਵਾਂ ਵਿੱਚ ਦਿਲਚਸਪੀ ਪੁਨਰ-ਸੁਰਜੀਤ ਹੋਈ ਹੈ, ਜਿਸਨੇ ਇਸਨੂੰ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਨਾਲ ਮੇਲ ਕਰਨ ਦਾ ਯਤਨ ਕੀਤਾ ਹੈ, ਭਾਵੇਂ ਇਸਦੇ ਲੱਛਣਾਂ ਵਿੱਚ ਸਪਿੱਨ ਜਾਂ ਵਕਰਿਤ ਸਥਾਨਿਕ ਰੇਖਗਣਿਤ ਹਨ।[3]
Remove ads
ਸੰਖੇਪ ਸਾਰਾਂਸ਼
ਡਬਲ-ਸਲਿਟ ਪ੍ਰਯੋਗ
ਥਿਊਰੀ
ਔਂਟੌਲੌਜੀ
ਗਾਈਡਿੰਗ ਇਕੁਏਸ਼ਨ
ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ
ਬੌਰਨ ਰੂਲ ਨਾਲ ਸਬੰਧ
ਕਿਸੇ ਉੱਪ-ਸਿਸਟਮ ਦਾ ਕੰਡੀਸ਼ਨਲ ਵੇਵ ਫੰਕਸ਼ਨ
ਸ਼ਾਖਾਵਾਂ
ਰਿਲੇਟੀਵਿਟੀ
ਸਪਿੱਨ
ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ
ਵਕਰਤਿ ਸਪੇਸ
ਗੈਰ-ਸਥਾਨਿਕਤਾ ਦਾ ਉਲੰਘਣ
ਨਤੀਜੇ
ਸਪਿੱਨ ਅਤੇ ਪੋਲਰਾਇਜ਼ੇਸ਼ਨ ਨਾਪਣਾ
ਨਾਪ, ਕੁਆਂਟਮ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ, ਅਤੇ ਨਿਰੀਖਕ ਸੁਤੰਤਰਤਾ
ਵੇਵ ਫੰਕਸ਼ਨ ਦਾ ਟੁੱਟਣਾ
ਔਬਜ਼ਰਵੇਬਲਾਂ ਦੇ ਤੌਰ 'ਤੇ ਓਪਰੇਟਰ
ਛੁਲੇ ਅਸਥਿਰਾਂਕ
ਹੇਜ਼ਨਰਬਰਗ ਦਾ ਅਨਸਰਟਨਟੀ ਸਿਧਾਂਤ
ਕੁਆਂਟਮ ਇੰਟੈਂਗਲਮੈਂਟ, ਆਈਨਸਟਾਈਨ-ਪੋਡਲਸਕੀ-ਰੋਜ਼ਨ ਪਹੇਲੀ, ਬੈੱਲ ਦੀ ਥਿਊਰਮ, ਅਤੇ ਗੈਰ-ਸਥਾਨਿਕਤਾ
ਕਲਾਸੀਕਲ ਸੀਮਾ
ਕੁਆਂਟਮ ਟ੍ਰੈਕੈਕਟਰੀ ਵਿਧੀ
ਓਕੱਮ ਦਾ ਰੇਜ਼ਰ ਅਲੋਚਨਾਵਾਦ
ਗੈਰ-ਬਰਾਬਰਤਾ
ਵਿਓਂਤਬੰਦੀਆਂ
ਇਤਿਹਾਸ
ਪੀਲੌਟ-ਵੇਵ ਥਿਊਰੀ
ਬੋਹਮੀਅਨ ਮਕੈਨਿਕਸ
ਕਾਰਣਾਤਮਿਕ ਵਿਆਖਿਆ ਅਤੇ ਔਂਟੌਲੌਜੀਕਲ ਵਿਆਖਿਆ
ਪ੍ਰਯੋਗ
ਇਹ ਵੀ ਦੇਖੋ
- ਡੇਵਿਡ ਬੋਹਮ
- ਫੈਰਾਡੇਅ ਵੇਵ
- ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਵਿਆਖਿਆ
- ਮੇਡਲੰਗ ਇਕੁਏਸ਼ਨ
- ਲੋਕਲ ਹਿਡਨ ਵੇਰੀਏਬਲ ਥਿਊਰੀ
- ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ
- ਪੀਲੌਟ ਵੇਵ
ਨੋਟਸ
ਹਵਾਲੇ
ਹੋਰ ਲਿਖਤਾਂ
ਬਾਹਰੀ ਲਿੰਕ
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads