ਵਾਸਤਵਿਕ ਅੰਕ
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
ਗਣਿਤ ਵਿੱਚ, ਇੱਕ ਵਾਸਤਵਿਕ ਨੰਬਰ ਇੱਕ ਮੁੱਲ ਹੁੰਦਾ ਹੈ ਜੋ ਕਿਸੇ ਨਿਰੰਤਰ ਰੇਖਾ ਦੇ ਨਾਲ ਨਾਲ ਇੱਕ ਮਾਤਰਾ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ। ਇਸ ਸੰਦਰਭ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ਣ “ਵਾਸਤਵਿਕ” ਡੇਸਕਰੇਟਸ ਦੁਆਰਾ 17ਵੀਂ ਸਦੀ ਵਿੱਚ ਪੇਸ਼ ਕੀਤਾ ਗਿਆ ਸੀ।, ਜਿਸਨੇ ਪੌਲੀਨੌਮੀਅਲਾਂ ਦੇ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਰੂਟਸ ਦਰਮਿਆਨ ਫਰਕ ਖੋਜਿਆ।

ਇਸ ਵਿੱਚ ਕਿਸੇ ਸਰੋਤ ਦਾ ਹਵਾਲਾ ਨਹੀਂ ਦਿੱਤਾ ਗਿਆ। |

ਵਾਸਤਵਿਕ ਨੰਬਰਾਂ ਵਿੱਚ ਸਾਰੇ ਰੇਸ਼ਨਲ ਨੰਬਰ ਸ਼ਾਮਿਲ ਹਨ, ਜਿਵੇਂ ਪੂਰਨ ਅੰਕ -5 (ਇੰਟਜਰ) ਅਤੇ ਫ੍ਰੈਕਸ਼ਨ (ਭਿੰਨ) 4/3, ਸਾਰੇ ਇਰਰੇਸ਼ਨਲ ਨੰਬਰ ਸ਼ਾਮਿਲ ਹਨ, ਜਿਵੇਂ √2 (1.41421356..., ਦੋ ਦਾ ਵਰਗਮੂਲ, ਇੱਕ ਇਰਰੇਸ਼ਨਲ ਅਲਜਬਰਿਕ ਨੰਬਰ) ਅਤੇ ਸਾਰੇ ਟਰਾਂਸਡੈਂਸ਼ਲ ਨੰਬਰ ਸ਼ਾਮਿਲ ਹਨ, ਜਿਵੇਂ π (3.14159265…, ਇੱਕ ਟਰਾਂਸਡੈਂਸ਼ਲ ਨੰਬਰ)। ਵਾਸਤਵਿਕ ਨੰਬਰਾਂ ਨੂੰ ਨੰਬਰ ਲਾਈਨ ਜਾਂ ਰੀਅਲ ਲਾਈਨ (ਵਾਸਤਵਿਕ ਰੇਖਾ) ਨਾਮਕ ਕਿਸੇ ਅਨੰਤ ਲੰਬੀ ਰੇਖਾ ਉੱਤੇ ਬਿੰਦੂਆਂ ਦੇ ਰੂਪ ਵਿੱਚ ਸੋਚਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿੱਥੇ ਪੂਰਨ ਅੰਕਾਂ ਨਾਲ ਸਬੰਧਤ ਬਿੰਦੂ ਇੱਕ ਸਮਾਨ ਵਿੱਥ ਨਾਲ ਰੱਖੇ ਹੁੰਦੇ ਹਨ। ਕੋਈ ਵੀ ਵਾਸਤਵਿਕ ਨੰਬਰ ਇੱਕ ਸੰਭਵ ਅਨੰਤ ਡੈਸੀਮਲ ਪ੍ਰਸਤੁਤੀ ਰਾਹੀਂ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਵੇਂ 8.632 ਵਾਲਾ ਨੰਬਰ, ਜਿੱਥੇ ਹਰੇਕ ਅਗਲਾ ਅੰਕ ਪਿਛਲੇ ਅੰਕ ਦੇ ਅਕਾਰ ਨਾਲੋਂ ਦਸਵਾਂ ਹਿੱਸਾ ਯੂਨਿਟ ਵਿੱਚ ਨਾਪਿਆ ਜਾਂਦਾ ਹੈ। ਵਾਸਤਵਿਕ ਰੇਖਾ ਨੂੰ ਕੰਪਲੈਕਸ ਪਲੇਨ ਦੇ ਇੱਕ ਹਿੱਸੇ ਵਜੋਂ ਸੋਚਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਅਤੇ ਕੰਪਲੈਕਸ ਨੰਬਰਾਂ ਵਿੱਚ ਵਾਸਤਵਿਕ ਨੰਬਰ ਸ਼ਾਮਿਲ ਹੁੰਦੇ ਹਨ।
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads