ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਇਤਿਹਾਸ
From Wikipedia, the free encyclopedia
Remove ads
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਇਤਿਹਾਸ ਬਹੁਤ ਸਾਰੇ ਸਿਧਾਂਤਿਕ ਨਤੀਜਿਆਂ ਅਤੇ ਅਲਬ੍ਰਟ ਏ ਮਾਈਕਲਸ, ਹੈਨਰੀ ਲੌਰੰਟਜ਼, ਹੈਨਰੀ ਪੋਆਇਨਕੇਅਰ ਅਤੇ ਹੋਰਾਂ ਦੁਆਰਾ ਕੱਢੀਆਂ ਅਨੁਭਵ ਸਿੱਧ ਖੋਜਾਂ ਭਰਪੂਰ ਹੈ। ਇਹ ਆਈਨਸਟਾਈਨ ਦੁਆਰਾ ਪ੍ਰਸਤਾਵਿਤ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਬਿ ਜਾ ਕੇ ਮੁੱਕਿਆ ਹੈ ਅਤੇ ਅਗਲੇ ਕੰਮ ਮੈਕਸ ਪਲੈਂਕ, ਹਰਮਨ ਮਿੰਕੋਵਸਕੀ ਅਤੇ ਹੋਰਾਂ ਨਾਲ ਸੁਰੂ ਹੁੰਦੇ ਹਨ।

Wikisource has original works on the topic: ਰਿਲੇਟੀਵਿਟੀ ਉੱਤੇ ਇਤਿਹਾਸਿਕ ਪੇਪਰ
Remove ads
ਮੱਧ-1800ਵੇਂ ਦਹਾਕੇ ਤੋਂ, ਆਰਾਗੋ ਸਪੌਟ ਅਤੇ ਹਵਾ ਬਨਾਮ ਪਾਣੀ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਨਾਪਾਂ ਦੇ ਨਿਰੀਖਣ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤੇ ਗਏ ਕਈ ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਕੌਰਪਿਉਸਕਿਉਲਰ ਥਿਊਰੀ ਤੋਂ ਉਲਟ ਪ੍ਰਕਾਸ਼ ਦੀ ਤਰੰਗ ਫਿਤ੍ਰਤ ਸਿੱਧ ਕੀਤੀ ਗਈ ਮੰਨੀ ਜਾਂਦੀ ਰਹੀ ਸੀ।[1] ਤਰੰਗਾਂ ਤੋਂ ਭਾਵ ਸੀ ਕਿਸੇ ਮਾਧਿਅਮ ਦੀ ਹੋਂਦ ਜੋ ਤਰੰਗਾਂ ਬਣਾਉਂਦਾ ਸੀ, ਪਰ ਇਹਨਾਂ ਪ੍ਰਯੋਗਾਂ ਦੇ ਨਤੀਜਿਆਂ ਵਜੋਂ ਪਰਿਕਲਪਿਤ ਚਮਕਦਾਰ ਏਇਥਰ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਨੂੰ ਨਾਪਣ ਦੇ ਯਤਨਾਂ ਨੇ ਵਿਰੋਧਾਭਾਸ ਵਾਲ਼ੇ ਨਤੀਜੇ ਮੁਹੱਈਆ ਕਰਵਾਏ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, 1851 ਦੇ ਫਿਜ਼ਿਆਉ ਪ੍ਰਯੋਗ ਨੇ ਸਾਬਤ ਕੀਤਾ ਕਿ ਵਹਿ ਰਹੇ ਪਾਣੀ ਅੰਦਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਹਵਾ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਅਤੇ ਪਾਣੀ ਦੀ ਸਪੀਡ ਦੇ ਜੋੜ ਨਾਲ਼ੋਂ ਪਾਣੀ ਦੇ ਰਿਫ੍ਰੈਕਸ਼ਨ ਇੰਡੈਕਸ ਉੱਤੇ ਅਧਾਰਿਤ ਮਾਤਰਾ ਜਿੰਨੀ ਘੱਟ ਸੀ।
ਹੋਰ ਮਸਲਿਆਂ ਵਿਚਕਾਰ, ਰੈਫ੍ਰੈਕਸ਼ਨ (ਜੋ ਵੇਵਲੈਂਥ ਉੱਤੇ ਨਿਰਭਰ ਹੈ) ਦੇ ਇੰਡੈਕਸ ਉੱਤੇ ਇਸ ਪ੍ਰਯੋਗ ਦੇ ਨਤੀਜਿਆਂ ਵਜੋਂ ਮਿਲੀ ਅੰਸ਼ਿਕ ਏਇਥਰ-ਡ੍ਰੈਗਿੰਗ ਦੀ ਨਿਰਭਰਤਾ ਨੇ ਸਖਤ ਨਤੀਜੇ ਵੱਲ ਲਿਜਾਂਦਾ ਕਿ ਏਇਥਰ ਤਤਕਾਲ ਤੌਰ 'ਤੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਵੱਖਰੇ ਰੰਗਾਂ ਵਾਸਤੇ ਵੱਖਰੀਆਂ ਸਪੀਡਾਂ ਨਾਲ ਵਹਿੰਦਾ ਹੈ।[2]
1887 ਦੇ ਪ੍ਰਸਿੱਧ ਮਾਈਕਲਸਨ-ਮੋਰਲੇ ਪ੍ਰਯੋਗ (Fig. 1‑2) ਨੇ ਧਰਤੀ ਦੀਆਂ ਗਤੀਆਂ ਦੇ ਉੱਤੇ ਕੋਈ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਪ੍ਰਭਾਵ ਨਹੀਂ ਦਿਖਾਇਆ, ਭਾਵੇਂ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਉੱਤੇ ਪਰਿਕਲਪਿਤ ਏਇਥਰ, ਅਤੇ ਸਭ ਤੋਂ ਜਿਆਦਾ ਸੰਭਵ ਵਿਆਖਿਆ, ਸੰਪੂਰਨ ਏਇਥਰ ਡ੍ਰੈਗਿੰਗ, ਸਥੈੱਲਰ ਅਬੈਰੇਸ਼ਨ ਦੇ ਨਿਰੀਖਣ ਨਾਲ ਮੇਲ ਨਹੀਂ ਖਾਂਦੀ ਸੀ। (Fig. 1‑3).[3]
ਚਿੱਤਰ 1-3. (top) ਸਟੈੱਲਰ ਅਬੈਰੇਸ਼ਨ ਦੀ ਦਿਸ਼ਾ ਸਾਲ ਦੇ ਵੱਖਰੇ ਸਮਿਆਂ ਉੱਤੇ ਵੱਖਰੀ ਹੁੰਦੀ ਹੈ। (bottom) ਏਇਥਰ ਡ੍ਰੈਗਿੰਗ—ਥਿਊਰੀ ਜੋ ਇੱਕ ਵਾਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਉੱਤੇ ਏਇਥਰ ਦੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਪਛਾਣਨ ਪ੍ਰਤਿ ਅਯੋਗਤਾ ਨੂੰ ਸਮਝਾਉਣ ਵਾਸਤੇ ਵਿਕਸਿਤ ਕੀਤੀ ਗਈ ਸੀ- ਸਟੈੱਲਰ ਅਬੇਰੇਸ਼ਨ ਨਾਲ ਮੇਲ ਨਹੀਂ ਖਾਂਦੀ ਹੈ।[ਵਾਧੂ ਵੇਰਵਿਆਂ ਵਾਸਤੇ ਇੱਥੇ ਕਲਿੱਕ ਕਰੋ 1]
1889 ਵਿੱਚ ਜੌਰਜ ਫ੍ਰਾਂਸਿਸ ਫਿਟਜ਼ਗ੍ਰਾਲਡ ਅਤੇ 1892 ਵਿੱਚ ਹੈਂਡ੍ਰਿਕ ਲੌਰੰਟਜ਼ ਨੇ ਸੁਤੰਤਰ ਤੌਰ 'ਤੇ ਪ੍ਰਸਤਾਵ ਰੱਖਿਆ ਕਿ ਸਥਿਰ ਕੀਤੇ ਹੋਏ ਏਇਥਰ ਰਾਹੀਂ ਯਾਤਰਾ ਕਰਦੀਆਂ ਪਦਾਰਥਕ ਵਸਤੂਆਂ ਭੌਤਿਕੀ ਤੌਰ 'ਤੇ ਆਪਣੇ ਲਾਂਘੇ ਦੁਆਰਾ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀਆਂ ਹਨ, ਇੰਨੀ ਕੁ ਮਾਤਰਾ ਜਿੰਨਾ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦਾ ਵਿਰੋਧ ਕਰਦਾ ਹੈ, ਜੋ ਮਾਈਕਲਸਨ-ਮੋਰਲੇ ਪ੍ਰਯੋਗ ਦੇ ਨੈਗਟਿਵ ਨਤੀਜਿਆਂ ਨੂੰ ਸਮਝਾਉਣ ਲਈ ਲਾਜ਼ਮੀ ਸੀ। (ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦੇ ਸਮਕੋਣ ਵਾਲੀਆਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਕੋਈ ਲੰਬਾਈ ਤਬਦੀਲੀ ਨਹੀਂ ਵਾਪਰਦੀ।) 1904 ਤੋਂ, ਲੌਰੰਟਜ਼ ਨੇ ਆਪਣੀ ਥਿਊਰੀ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਵਿਸਥਾਰ ਕੀਤਾ ਕਿ ਉਸਨੇ ਉਹਨਾਂ ਇਕੁਏਸ਼ਨਾਂ ਨਾਲ ਰਸਮੀ ਤੌਰ 'ਤੇ ਮਿਲਦੀਆ਼ ਜੁਲਦੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਦੀ ਪ੍ਰਾਪਤੀ ਕੀਤੀ ਜਿਹਨਾਂ ਨੂੰ ਬਾਦ ਵਿੱਚ ਆਈਨਸਟਾਈਨ ਨੇ ਵਿਓਂਤਬੰਦ ਕੀਤਾ (ਯਾਨਿ ਕਿ, ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੌਰਮ), ਪਰ ਬੁਨਿਆਦੀ ਤੌਰ 'ਤੇ ਜਰਾ ਵੱਖਰੀ ਵਿਆਖਿਆ ਨਾਲ ਵਿਓਂਤਬੰਦ ਕੀਤਾ।
ਡਾਇਨਾਮਿਕਸ (ਫੋਰਸਾਂ ਅਤੇ ਟੋਰਕਾਂ ਅਯੇ ਗਤੀ ਉੱਤੇ ਇਹਨਾਂ ਦੇ ਪ੍ਰਭਾਵਾਂ ਦੇ ਅਧਿਐਨ) ਦੀ ਇੱਕ ਥਿਊਰੀ ਦੇ ਤੌਰ 'ਤੇ, ਉਸਦੀ ਥਿਊਰੀ ਨੇ ਪਦਾਰਥ ਦੇ ਭੌਤਿਕੀ ਰਚਣਹਾਰਿਆਂ ਦੇ ਵਾਸਤਵਿਕ ਭੌਤਿਕੀ ਤਰੋੜ-ਮਰੋੜ ਨੂੰ ਮੰਨਿਆ, ਅਤੇ ਇਸਨੇ ਨਿਰੀਖਣ ਕੀਤੇ ਜਾ ਸਕਣ ਯੋਗ ਵਿਭਿੰਨ ਭੌਤਿਕੀ ਪ੍ਰਭਾਵਾਂ ਦਾ ਅਨੁਮਾਨ ਲਗਾਇਆ।[4]: 163–174 ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, ਜਿਆਦਾਤਰ ਭੌਤਿਕ ਵਿਗਿਆਨੀਆਂ ਦਾ ਮੰਨਣਾ ਸੀ ਕਿ ਲੌਰੰਟਜ਼ ਕੰਟ੍ਰੈਕਸ਼ਨ ਟ੍ਰਓਟਨ-ਨੋਬਲ ਐਕਸਪੈਰੀਮੈਂਟ ਜਾਂ ਰੇਲੀਘ ਅਤੇ ਬ੍ਰੇਸ ਦੇ ਪ੍ਰਯੋਗਾਂ ਵਰਗੇ ਅਜਿਹੇ ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਪਛਾਣਮਯੋਗ ਹੋ ਸਕਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।[5]: 64 ਫੇਰ ਵੀ, ਇਸਦੇ ਨੈਗਟਿਵ ਨਤੀਜੇ ਮਿਲੇ, ਅਤੇ ਇਲੈਕਟ੍ਰੌਨ ਦੀ ਉਸਦੀ 1904 ਦੀ ਥਿਊਰੀ ਅੰਦਰ, ਲੌਰੰਟਜ਼ ਨੇ ਇਹਨਾਂ ਨੈਗਟਿਵ ਨਤੀਜਿਆਂ ਬਾਰੇ ਸਮਝਾਇਆ ਕਿ ਇਹ ਉਸਦੀਆਂ ਟ੍ਰਾਂਸਫੌਰਮਾਂ ਦੇ ਇੱਕ ਲਾਜ਼ਮੀ ਨਤੀਜੇ ਵਜੋਂ ਸਨ। ਪੋਆਇਨਕੇਅਰ ਨੇ, ਲੌਰੰਟਜ਼ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ ਕੁੱਝ ਗਲਤੀਆਂ ਸੁਧਾਰਦਿਆਂ ਸਾਬਤ ਕੀਤਾ ਕਿ ਏਇਥਰ ਪਛਾਣਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ, ਪਰ ਉਸਨੇ ਆਪਣੀ ਜਿੰਦਗੀ ਦੇ ਰਹਿੰਦੇ ਵਕਤ ਦੌਰਾਨ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੌਰਮ ਦੀ ਡਾਇਨੈਮੀਕਲ ਵਿਆਖਿਆ ਵਿੱਚ ਵਿਸ਼ਵਾਸ ਕਰਨਾ ਜਾਰੀ ਰੱਖਿਆ।[4]: 163–174
ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਵਰਤਮਾਨ ਵਿਕਸਿਤ ਸਮਝ, 20ਵੀਂ-ਸਦੀ ਦੇ ਮੁੱਕਣ ਦੀ ਲੰਬੇ ਸਮੇਂ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਰਹੀ ਥਾਂ ਵੱਲ ਝੁਕਾਓ ਰੱਖਦੀ ਜਾਂਦੀ ਹੈ ਜੋ ਮਾਈਕਲਸਨ ਅਤੇ ਮੋਰਲੇ ਪ੍ਰਯੋਗ ਉੱਤੇ ਹੈ। ਪਰ ਆਈਨਸਟਾਈਨ ਲਈ, ਉਸਦੀ ਅੰਤਿਮ ਪ੍ਰੇਰਣਾ ਉਹ ਬੇਮੇਲਤਾਵਾਂ ਰਹੀਆਂ ਹਨ ਜੋ ਉਸਨੇ ਓਸ ਅੰਦਾਜ਼ ਵਿੱਚ ਸਮਝੀਆਂ ਸਨ ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਦੀ ਮੈਕਸਵੈੱਲ ਦੀ ਥਿਊਰੀ ਵਿਆਖਿਅਤ ਕੀਤੀ ਗਈ ਸੀ। ਭਾਵੇਂ 1905 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ ਨੇ ਗਤੀਸ਼ੀਲ ਚੁੰਬਕ ਅਤੇ ਕੰਡਕਟਰ ਸਮੱਸਿਆ ਬਾਰੇ ਲਿਖਿਆ ਜਿਸਨੂੰ ਆਮਤੌਰ 'ਤੇ ਅਸਮਰੂਪਤਾਵਾਂ ਵਾਲ ਲਿਜਾਂਦਾ ਸਮਝਿਆ ਗਿਆ ਸੀ, ਫੇਰ ਵੀ ਇਹ ਅਸਮਰੂਪਤਾਵਾਂ ਹਰਟਜ਼, ਲੌਰੰਟਜ਼, ਅਤੇ ਖੁਦ ਮੈਕਸਵੈੱਲ ਸਮੇਤ, ਮੈਕਸਵੈੱਲ ਦੀ ਥਿਊਰੀ ਦੇ ਪ੍ਰਮੁੱਖ ਸਮਰਥਕਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਦੁਆਰਾ ਮੰਗੀ ਜਾਂਦੀ ਵਿਆਖਿਆ ਮੰਗਦੇ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਮਸਲੇ ਦੇ ਤੌਰ 'ਤੇ ਨੋਟ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਨਹੀਂ ਲਗਦੀਆਂ।[5]: 135–142
ਆਈਨਸਟਾਈਨ ਦੀ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ, ਜੋ 1905 ਵਿੱਚ ਪੇਸ਼ ਕੀਤੀ ਗਈ ਸੀ, ਨੇ ਇਹਨਾਂ ਅਤੇ ਹੋਰ ਵੱਡੇ ਭੌਤਿਕ ਵਿਗਿਆਨ ਰਹੱਸਾਂ ਦਾ ਇੱਕ ਸੰਪੂਰਣ ਹੱਲ ਮੁਹੱਈਆ ਕਰਵਾਇਆ, ਅਤੇ ਇਸਨੇ ਅਜਿਹੀਆਂ ਭਵਿੱਖਬਾਣੀਆਂ ਸ਼ੁਰੂ ਕੀਤੀਆਂ ਜੋ ਵਾਰ ਵਾਰ ਸਾਬਤ ਹੁੰਦੀਆਂ ਰਹੀਆਂ ਹਨ। ਆਈਨਸਟਾਈਨ ਨੇ ਅਪਣਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਾਇਨਾਮੈਟਿਕਸ (ਫੋਰਸਾਂ ਦੀ ਰੈਫ੍ਰੈਂਸ ਤੋਂ ਬਗੈਰ ਗਤੀਸ਼ੀਲ ਚੀਜ਼ਾਂ ਦੇ ਅਧਿਐਨ) ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਕੀਤਾ ਨਾ ਕਿ ਡਾਇਨਾਮਿਕਸ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ। ਇਹ ਲਗਦਾ ਹੋ ਸਕੇਗਾ ਕਿ ਉਸਨੇ ਸਪੇਸਟਾਈਮ ਬਾਰੇ ਪਹਿਲਾਂ ਰੇਖਾਗਣਿਤਿਕ ਤੌਰ 'ਤੇ ਨਹੀਂ ਸੋਚਿਆ ਸੀ। ਇਹ ਆਈਨਸਟਾਈਨ ਦਾ ਪਹਿਲਾ ਗਣਿਤ ਪ੍ਰੋਫੈੱਸਰ ਹਰਮਨ ਮਿੰਕੋਵਸਕੀ ਸੀ, ਜਿਸਨੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਇੱਕ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਮੁਹੱਈਆ ਕਰਵਾਉਣੀ ਸੀ।[6]: 219
ਆਈਨਸਟਾਈਨ ਸ਼ੁਰੂ ਵਿੱਚ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਨੂੰ ਖਾਰਿਜ ਕਰਦਾ ਰਿਹਾ ਸੀ ਤੇ ਇਸਨੂੰ überflüssige Gelehrsamkeit (ਜਰੂਰਤ ਤੋਂ ਜਿਆਦਾ ਗਿਆਨ) ਪੁਕਾਰਦਾ ਰਿਹਾ ਸੀ। ਫੇਰ ਵੀ, ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਨੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਆਈਨਸਟਾਈਨ ਦੇ ਬਾਦ ਦੇ ਵਿਕਾਸ ਪ੍ਰਤਿ ਮਹੱਤਵਪੂਰਨ ਰੋਲ ਨੂੰ ਸਾਬਤ ਕਰਨਾ ਸੀ, ਅਤੇ 1916 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ ਨੇ ਪੂਰੀ ਤਰਾਂ ਮਿੰਕੋਵਸਕੀ ਪ੍ਰਤਿ ਆਪਣੀ ਅਹਿਸਾਨਮੰਦੀ ਸਵੀਕਾਰ ਕੀਤੀ, ਜਿਸਦੀ ਵਿਆਖਿਆ ਨੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਪ੍ਰਤਿ ਪਰਿਵਰਤਨ ਨੂੰ ਵੱਡੇ ਪੱਧਰ ਤੇ ਮਦਦ ਕੀਤੀ।[4]: 151–152 ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਸਪੇਸਟਾਈਮ ਉਦੋਂ ਤੋਂ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ ਦੇ ਤੌਰ 'ਤੇ ਜਾਣਿਆ ਜਾਂਦਾ ਰਿਹਾ ਹੈ।
ਹੈਂਡ੍ਰਿਕ ਲੌਰੰਟਜ਼
ਹੈਨਰੀ ਪੋਆਇਨਕੇਅਰ
ਅਲਬ੍ਰਟ ਆਈਨਸਟਾਈਨ
ਹਰਮਨ ਮਿੰਕੋਵਸਕੀ
ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਉਦਾਹਰਨ ਹੈਨਰੀ ਪੋਆਇਨਕੇਅਰ ਹੈ,[5]: 73–80, 93–95 [7] ਜਿਸਨੇ 1898 ਵਿੱਚ ਤਰਕ ਦਿੱਤਾ ਕਿ ਦੋ ਘਟਨਾਵਾਂ ਦੀ ਤਤਕਾਲੀਨਤਾ ਇੱਕ ਪ੍ਰੰਪਰਾ ਦਾ ਮਸਲਾ ਹੈ।[8][note 1] 1900 ਵਿੱਚ, ਉਸਨੇ ਪਛਾਣਿਆ ਕਿ ਲੌਰੰਟਜ਼ ਦਾ ਲੋਕਲ ਟਾਈਮ ਦਰਅਸਲ ਓਹ ਸਮਾਂ ਹੁੰਦਾ ਹੈ ਜੋ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨੂੰ ਸਥਿਰ ਮੰਨਦੇ ਹੋਏ ਕਲੌਕ ਸਿੰਕ੍ਰੋਨਾਇਜ਼ੇਸ਼ਨ ਦੀ ਇੱਕ ਸਪਸ਼ਟ ਕ੍ਰਿਆਤਮਿਕ ਪਰਿਭਾਸ਼ਾ ਲਾਗੂ ਕਰਦੇ ਹੋਏ ਗਤੀਸ਼ੀਲ ਕਲੌਕ ਦਿੰਦੇ ਹਨ।[note 2] 1900 ਅਤੇ 1904 ਵਿੱਚ, ਉਸਨੇ ਓਸ ਚੀਜ਼ ਦੀ ਪ੍ਰਮਾਣਿਕਤਾ ਤੇ ਜ਼ੋਰ ਦਿੰਦੇ ਹੋਏ ਏਇਥਰ ਦੀ ਜਨਮਜਾਤ ਪਛਾਣ-ਅਯੋਗਤਾ ਸੁਝਾਈ, ਜਿਸ ਨੂੰ ਉਸਨੇ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਸਿਧਾਂਤ ਕਿਹਾ, ਅਤੇ 1905/1906 ਵਿੱਚ[9] ਉਸਨੇ ਗਣਿਤਿਕ ਤੌਰ 'ਤੇ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਅਨੁਸਾਰ ਕਰਨ ਵਾਸਤੇ ਇਲੈਕਟ੍ਰੌਨਾਂ ਦੀ ਲੌਰੰਟਜ਼ ਥਿਊਰੀ ਨੂੰ ਸੰਪੂਰਣ ਬਣਾਇਆ। ਲੌਰੰਟਜ਼ ਇਨਵੇਰੀਅੰਟ ਗਰੈਵੀਟੇਸ਼ਨ ਉੱਤੇ ਵਿਭਿੰਨ ਪਰਿਕਲਪਨਾਵਾਂ ਦੀ ਚਰਚਾ ਕਰਦੇ ਵਕਤ, ਉਸਨੇ ਫੋਰ-ਪੁਜੀਸਨ, ਫੋਰ-ਵਿਲੌਸਿਟੀ, ਅਤੇ ਫੋਰ-ਫੋਰਸ ਨਾਮਕ ਵਿਭਿੰਨ ਫੋਰ-ਵੈਕਟਰਾਂ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹੋਏ ਇੱਕ 4-ਅਯਾਮੀ ਸਪੇਸਟਾਈਮ ਦਾ ਨਵੀਨ ਸੰਕਲਪ ਪੇਸ਼ ਕੀਤਾ।[10][11] ਉਸਨੇ, ਫੇਰ ਵੀ, ਅਗਲੇ ਪੇਪਰਾਂ ਵਿੱਚ 4-ਅਯਾਮੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦਾ ਪਿੱਛਾ ਨਹੀਂ ਕੀਤਾ, ਤੇ ਕਿਹਾ ਕਿ ਰੀਸਰਚ ਦੀ ਇਹ ਲਾਈਨ “ਸੀਮਤ ਲਾਭ ਵਾਸਤੇ ਵੱਡੀ ਤਕਲੀਫ ਜਰੂਰੀ” ਕਰਦੀ ਲਗਦੀ ਹੈ, ਤੇ ਅੰਤ ਨੂੰ ਇਹ ਨਤੀਜਾ ਕੱਢਿਆ ਕਿ ਤਿੰਨ-ਅਯਾਮੀ ਭਾਸ਼ਾ ਸਾਡੇ ਸੰਸਾਰ ਦੇ ਵੇਰਵੇ ਪ੍ਰਤਿ ਸਭ ਤੋਂ ਜਿਆਦਾ ਢੁਕਵੀਂ ਲਗਦੀ ਹੈ।[11] ਹੋਰ ਅੱਗੇ, 1909 ਜਿੰਨੀ ਦੇਰ ਬਾਦ, ਪੋਆਇਨਕੇਅਰ ਨੇ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੌਰਮ ਦੀ ਗਤੀਸ਼ੀਲਾਤਮਿਕ ਵਿਆਖਿਆ ਵਿੱਚ ਵਿਸਵਾਸ ਰੱਖਣਾ ਜਾਰੀ ਰੱਖਿਆ।[4]: 163–174 ਇਹਨਾਂ ਅਤੇ ਹੋਰ ਕਾਰਨਾਂ ਕਰਕੇ, ਵਿਗਿਆਨ ਦੇ ਜਿਆਦਾਤਰ ਇਤਿਹਾਸਕਾਰ ਤਰਕ ਕਰਦੇ ਰਹੇ ਹਨ ਕਿ ਪੋਆਇਨਕੇਅਰ ਨੇ ਉਹ ਨਹੀਂ ਖੋਜਿਆ ਜਿਸ ਨੂੰ ਹੁਣ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।[4][5]
1905 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ ਨੇ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਦੀ ਇੱਕ ਥਿਊਰੀ ਦੇ ਤੌਰ 'ਤੇ ਇਸਦੀ ਅਜੋਕੀ ਸਮਝ ਮੁਤਾਬਿਕ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਪੇਸ਼ ਕੀਤੀ (ਭਾਵੇਂ ਸਪੇਸਟਾਈਮ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦੀਆਂ ਤਕਨੀਕਾਂ ਵਰਤੇਂ ਬਗੈਰ)।[4][5] ਜਦੋਂਕਿ ਉਸਦੇ ਨਤੀਜੇ ਗਣਿਤਿਕ ਤੌਰ 'ਤੇ ਲੌਰੰਟਜ਼ ਅਤੇ ਪੋਆਇਨਕੇਅਰ ਦੇ ਨਤੀਜਿਆਂ ਨਾਲ ਮਿਲਦੇ ਹਨ, ਫੇਰ ਵੀ ਇਹ ਆਈਨਸਟਾਈਨ ਹੀ ਸੀ। ਜਿਸਨੇ ਸਾਬਤ ਕੀਤਾ ਕਿ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਪਦਾਰਥ ਅਤੇ ਏਇਥਰ ਦਰਮਿਆਨ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦਾ ਨਤੀਜਾ ਨਹੀਂ ਹਨ, ਸਗੋਂ ਖੁਦ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਦੀ ਕੁਦਰਤ ਨਾਲ ਸਬੰਧਤ ਹਨ। ਆਈਨਸਟਾਈਨ ਨੇ ਅਪਣਾ ਵਿਸਲੇਸ਼ਣ ਡਾਇਨਾਮਿਕਸ ਨਾਲ਼ੋਂ ਕਾਇਨਾਮੈਟਿਕਸ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਕੀਤਾ। ਉਸਨੇ ਆਪਣੇ ਸਾਰੇ ਨਤੀਜੇ ਇਹ ਪਛਾਣਦੇ ਹੋਏ ਪ੍ਰਾਪਤ ਕੀਤੇ ਕਿ ਸਾਰੀ ਦੀ ਸਾਰੀ ਥਿਊਰੀ ਦੋ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤਾਂ ਉੱਤੇ ਬਣਾਈ ਜਾ ਸਕਦੀ ਹੈ: ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਸਿਧਾਂਤ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੀ ਸਥਿਰਤਾ ਦਾ ਸਿਧਾਂਤ। ਇਸਦੇ ਨਾਲ ਨਾਲ, ਆਈਨਸਟਾਈਨ ਨੇ 1905 ਵਿੱਚ ਸਰਵ ਸਧਾਰਨ ਪੁੰਜ ਅਤੇ ਊਰਜਾ ਸਮਾਨਤਾ ਪੇਸ਼ ਕਰਦੇ ਹੋਏ ਇੱਕ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਪੁੰਜ-ਊਰਜਾ ਸਬੰਧ ਦੇ ਪਿਛਲੇ ਯਤਨਾਂ ਨੂੰ ਦਬਾ ਦਿੱਤਾ, ਜੋ 1907 ਵਿੱਚ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਦੀ ਉਸਦੀ ਅਗਲੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਵਾਸਤੇ ਸਹਾਇਕ ਰਿਹਾ ਸੀ।, ਜਿਸਨੇ ਇਨਰਸੀਅਲ ਅਤੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁੰਜ ਐਲਾਨ ਕੀਤਾ। ਪੁੰਜ-ਊਰਜਾ ਸਮਾਨਤਾ ਵਰਤਦੇ ਹੋਏ, ਇਸਦੇ ਨਾਲ ਨਾਲ, ਆਈਨਸਟਾਈਨ ਨੇ ਦਿਖਾਇਆ, ਕਿ ਕਿਸੇ ਵਸਤੂ ਦਾ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁੰਜ ਉਸਦੀ ਊਰਜਾ ਸਮੱਗਰੀ ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਜੋ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿਕਸਿਤ ਕਰਨ ਵਿੱਚ ਸ਼ੁਰੂਆਤੀ ਨਤੀਜਿਆਂ ਵਿੱਚੋਂ ਇੱਕ ਨਤੀਜਾ ਸੀ। ਜਦੋਂਕਿ ਇਹ ਦਿਸਦਾ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਉਸਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਰੇਖਾਗਣਿਤਿਕ ਤੌਰ 'ਤੇ ਸਪੇਸਟਾਈਮ ਬਾਬਤ ਨਹੀਂ ਸੋਚਿਆ ਸੀ,[6]: 219 ਫੇਰ ਵੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਹੋਰ ਅੱਗੇ ਵਿਕਾਸ ਵਿੱਚ ਆਈਨਸਟਾਈਨ ਨੇ ਸਪੇਸਟਾਈਮ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਨੂੰ ਪੂਰੀ ਤਰਾਂ ਸਾਮਿਲ ਕਰ ਲਿਆ ਸੀ।
ਜਦੋਂ ਆਈਨਸਟਾਈਨ ਨੇ 1905 ਵਿੱਚ ਛਾਪਿਆ, ਤਾਂ ਇੱਕਹੋਰ ਪ੍ਰਤੀਯੋਗੀ, ਉਸਦਾ ਪਹਿਲਾ ਗਣਿਤ ਪ੍ਰੋਫੈੱਸਰ ਹਰਮਨ ਮਿੰਕੋਵਸਕੀ, ਵੀ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਜਿਆਦਾਤਰ ਬੁਨਿਆਦੀ ਤੱਤਾਂ ਉੱਤੇ ਅੱਪੜਿਆ ਸੀ। ਮੈਕਸ ਬੌਰਨ ਨੇ ਮਿੰਕੋਵਸਕੀ ਦਾ ਵਿਦਿਆਰਥ-ਸਹੋਯੋਗਿਕ ਹੋਣ ਵਾਸਤੇ ਮਿੰਕੋਵਸਕੀ ਨਾਲ ਇੱਕ ਮੀਟਿੰਗ ਦਾ ਪੁਨਰ-ਪ੍ਰਬੰਧ ਕੀਤਾ:[12]
I ਕੋਲੋਗਨਿ ਗਿਆ, ਮਿੰਕੋਵਸਕੀ ਨੂੰ ਮਿਲਿਆ ਅਤੇ 2 ਸਤੰਬਰ 1908 ਨੂੰ ਉਸਦਾ ਦਿੱਤਾ ਜਾ ਰਿਹਾ ਲੈਕਚਰ “ਸਪੇਸ ਅਤੇ ਟਾਈਮ” ਸੁਣਿਆ। […] ਉਸਨੇ ਮੈਨੂੰ ਬਾਦ ਵਿੱਚ ਦੱਸਿਆ ਕਿ ਉਸਨੂੰ ਓਦੋਂ ਵੱਡਾ ਝਟਕਾ ਲੱਗਾ ਜਦੋਂ ਆਈਨਸਟਾਈਨ ਨੇ ਅਪਣਾ ਓਹ ਪੇਪਰ ਛਾਪਿਆ ਜਿਸ ਵਿੱਚ ਇੱਕ ਦੂਜੇ ਪ੍ਰਤਿ ਸਾਪੇਖਿਕ ਗਤੀਸ਼ੀਲ ਔਬਜ਼ਰਵਰਾਂ ਦੇ ਵੱਖਰੇ ਲੋਕਲ ਵਕਤਾਂ ਦੀ ਸਮਾਨਤਾ ਉੱਚਾਰੀ ਗਈ ਸੀ; ਜਿਸ ਵਾਸਤੇ ਉਸ ਇਹੀ ਨਤੀਜਿਆਂ ਉੱਤੇ ਸੁਤੰਤਰ ਤੌਰ 'ਤੇ ਪਹੁੰਚਿਆ ਸੀ। ਪਰ ਉਸਨੇ ਛਪਵਾਇਆ ਨਹੀਂ ਕਿਉਂਕਿ ਉਹ ਪਹਿਲਾਂ ਇਸਨੂੰ ਹਰੇਕ ਤਰੀਕੇ ਨਾਲ ਸ਼ਾਨਦਾਰ ਤੌਰ 'ਤੇ ਗਣਿਤਿਕ ਬਣਤਰ ਕੱਢਕੇ ਪੇਸ਼ ਕਰਨਾ ਪਸੰਦ ਕਰਦਾ ਸੀ। ਉਸਨੇ ਕਦੇ ਵੀ ਪਹਿਲ ਦਾ ਦਾਅਵਾ ਨਹੀਂ ਕੀਤਾ ਅਤੇ ਹਮੇਸ਼ਾ ਹੀ ਮਹਾਨ ਖੋਜ ਵਿੱਚ ਉਸਦੀ ਪੂਰੀ ਸਾਂਝ ਆਈਨਸਟਾਈਨ ਨੂੰ ਦਿੰਦਾ ਰਿਹਾ।
ਮਿੰਕੋਵਸਕੀ 1905 ਦੀਆਂ ਗਰਮੀਆਂ ਤੋਂ ਮਾਈਕਲਸਨ ਦੇ ਹਾਨੀਕਾਰ ਪ੍ਰਯੋਗਾਂ ਤੋਂ ਬਾਦ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਦੀ ਅਵਸਥਾ ਨਾਲ ਸਬੰਧਤ ਰਿਹਾ ਸੀ, ਜਦੋਂ ਮਿੰਕੋਵਸਕੀ ਅਤੇ ਡੇਵਿਡ ਹਿਲਬ੍ਰਟ ਨੇ ਲੌਰੰਟਜ਼, ਪੋਆਇਨਕੇਅਰ ਅਤੇ ਹੋਰਾਂ ਦੇ ਪੇਪਰਾਂ ਦਾ ਅਧਿਐਨ ਕਰਨ ਵਾਸਤੇ ਸਮਕਾਲੀਨ ਪ੍ਰਸਿੱਧ ਭੌਤਿਕ ਵਿਗਿਆਨੀਆਂ ਦੁਆਰਾ ਇੱਕ ਅਡਵਾਂਸਡ ਸੈਮੀਨਾਰ ਦੀ ਹਾਜ਼ਰੀ ਭਰਨ ਦੀ ਅਗਵਾਈ ਕੀਤੀ ਸੀ। ਫੇਰ ਵੀ, ਇਹ ਪੂਰੀ ਤਰਾਂ ਸਪਸ਼ਟ ਨਹੀਂ ਹੈ ਕਿ ਕਦੋਂ ਮਿੰਕੋਵਸਕੀ ਨੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਨੂੰ ਵਿਓਂਤਬੰਦ ਕਰਨਾ ਸੁਰੂ ਕੀਤਾ ਸੀ ਜਿਸਨੇ ਉਸਦਾ ਨਾਮ ਪੈਦਾ ਕਰਨਾ ਸੀ, ਜਾਂ ਉਹ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਦੀ ਪੋਆਇਨਕੇਅਰ ਦੀ ਚਾਰ-ਅਯਾਮੀ ਵਿਆਖਿਆ ਤੋਂ ਕਿੰਨਾ ਕੁ ਪ੍ਰਭਾਵਿਤ ਹੋਇਆ ਸੀ। ਨਾਂ ਹੀ ਇਹ ਹੀ ਸਪਸ਼ਟ ਹੋਇਆ ਹੈ ਕਿ ਜੇਕਰ ਉਸਨੇ ਕਦੇ ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਪ੍ਰਤਿ ਸਮਝ ਪ੍ਰਤਿ ਆਈਨਸਟਾਈਨ ਦੇ ਆਲੋਚਨਾਤਮਿਕ ਯੋਗਦਾਨ ਦੀ ਇਹ ਸੋਚਦੇ ਹੋਏ ਪੂਰੀ ਤਰਾਂ ਪ੍ਰਸ਼ੰਸਾ ਵੀ ਕੀਤੀ ਹੋਵੇ, ਕਿ ਆਈਨਸਟਾਈਨ ਦਾ ਕੰਮ ਲੌਰੰਟਜ਼ ਦੇ ਕੰਮ ਦੀ ਇੱਕ ਸ਼ਾਖਾ ਹੋਵੇ।[13]

ਆਪਣੀ ਮੌਤ ਤੋਂ ਸਾਲ ਕੁ ਤੋਂ ਥੋੜਾ ਚਿਰ ਪਹਿਲਾਂ, ਮਿੰਕੋਵਸਕੀ ਨੇ ਨਵੰਬਰ 5, 1907 ਨੂੰ “ਦੀ ਰਿਲੇਟੀਵਿਟੀ ਪ੍ਰਿੰਸੀਪਲ” (Das Relativitätsprinzip) ਸਿਰਲੇਖ ਅਧੀਨ ਗੌਟਿੰਗਟਨ ਮੈਥੇਮੈਟੀਕਲ ਸੋਸਾਇਟੀ ਨੂੰ ਦਿੱਤੇ ਇੱਕ ਲੈਚਕਰ ਵਿੱਚ ਸਪੇਸਟਾਈਮ ਦੀ ਆਪਣੀ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਜਨਤਾ ਅੱਗੇ ਪ੍ਰਸਤੁਤ ਕੀਤੀ। ਇਸ ਲੈਕਚਰ ਦੇ ਮੂਲ ਵਰਜ਼ਨ ਵਿੱਚ, ਮਿੰਕੋਵਸਕੀ ਨੇ ਏਇਥਰ ਵਰਗੇ ਪੁਰਾਣੇ ਸ਼ਬਦਾਂ ਦੀ ਵਰਤੋਂ ਜਾਰੀ ਰੱਖੀ, ਪਰ “ਅੱਨਾਲਜ਼ ਔਫ ਫਿਜ਼ਿਕਸ” (Annalen der Physik) ਵਿੱਚ ਇਸ ਲੈਕਚਰ ਦੇ 1915 ਵਾਲ਼ੇ ਉਸਦੇ ਮਰਣੋਪ੍ਰਾਂਤ ਪ੍ਰਕਾਸ਼ਨ ਨੂੰ ਇਸ ਸ਼ਬਦ ਨੂੰ ਹਟਾਉਣ ਲਈ ਸੋਮਰਫੈਲਡ ਨੇ ਐਡਿਟ ਕੀਤਾ ਸੀ। ਸੋੱਮਰਫੈਲਡ ਨੇ ਇਸ ਲੈਕਚਰ ਦੇ ਪ੍ਰਕਾਸ਼ਿਤ ਰੂਪ ਨੂੰ ਵੀ ਐਡਿਟ ਕੀਤਾ, ਤਾਂ ਜੋ ਮਿੰਕੋਵਸਕੀ ਦੀ ਆਈਨਸਟਾਈਨ ਵਾਲੀ ਜੱਜਮੈਂਟ ਦੋਹਰਾਈ ਜਾ ਸਕੇ ਜਿਸ ਵਿੱਚ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸਿਧਾਂਤ ਦਾ ਆਈਨਸਟਾਈਨ ਨੂੰ ਸਿਰਫ ਸਪਸ਼ਟਕਰਤਾ ਹੀ ਕਿਹਾ ਗਿਆ ਸੀ, ਜੋ ਇਸਦਾ ਮੁੱਖ ਵਿਆਖਿਆਕਾਰ ਸੀ।[12]
ਦਸੰਬਰ 21, 1907 ਨੂੰ, ਮਿੰਕੋਵਸਕੀ ਨੇ ਫੇਰ ਤੋਂ ਗੌਟਿੰਗਟਨ ਸੈਂਟੀਫਿਕ ਸੋਸਾਇਟੀ ਮੂਹਰੇ ਬੋਲਿਆ, ਅਤੇ ਸਤੰਬਰ 21, 1908 ਨੂੰ, ਮਿੰਕੋਵਸਕੀ ਨੇ ਆਪਣੀ ਪ੍ਰਸਿੱਧ ਗੱਲਬਾਤ, ਸਪੇਸ ਐਂਡ ਟਾਈਮ (Raum und Zeit),[14] ਜਰਮਨ ਸੋਸਾਇਟੀ ਔਫ ਸਾਇੰਟਿਸਟਸ ਐਂਡ ਫਿਜ਼ੀਸ਼ੀਅਨਜ਼ ਅੱਗੇ ਪੇਸ਼ ਕੀਤੀ।[note 3]
“ਸਪੇਸ ਅਤੇ ਟਾਈਮ” ਦੇ ਸ਼ੁਰੂਆਤੀ ਸ਼ਬਦ ਮਿੰਕੋਵਸਕੀ ਦੀ ਪ੍ਰਸਿੱਧ ਬਿਆਨਬਾਜ਼ੀ ਸਾਮਿਲ ਕਰਦਾ ਹੈ ਕਿ “ਇਸਲਈ, ਸਪੇਸ ਆਪਣੇ ਆਪ ਵਿੱਚ, ਅਤੇ ਟਾਈਮ ਆਪਣੇ ਆਪ ਵਿੱਚ ਸਿਰਫ ਕਿਸੇ ਪਰਛਾਵੇਂ ਤੱਕ ਪੂਰੀ ਤਰਾਂ ਘਟ ਕੇ ਸੀਮਤ ਹੋ ਜਾਣਗੇ, ਅਤੇ ਦੋਵਾਂ ਦੀ ਯੂਨੀਅਨ ਦੀ ਕੋਈ ਕਿਸਮ ਸੁਤੰਤਰਤਾ ਸੁਰੱਖਿਅਤ ਰੱਖੇਗੀ।”
ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਨੇ ਸਪੇਸਟਾਈਮ ਚਿੱਤਰਾਂ (Fig. 1‑4) ਦੀ ਪਹਿਲੀ ਜਨਤਕ ਪੇਸ਼ਕਸ਼ ਸ਼ਾਮਿਲ ਕੀਤੀ ਸੀ, ਅਤੇ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਦ੍ਰਸ਼ਨ ਸ਼ਾਮਿਲ ਕੀਤਾ ਸੀ। ਕਿ “ਸਥਿਰ ਅੰਤ੍ਰਾਲ” ਦੀ ਧਾਰਨਾ, ਇਸ ਅਨੁਭਵ-ਸਿੱਧ ਨਿਰੀਖਣ ਨਾਲ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਸੀਮਤ ਹੁੰਦੀ ਹੈ, ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਸੰਪੂਰਣਤਾ ਦੀ ਵਿਓਂਤਬੰਦੀ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ।[note 4]
ਆਈਨਸਟਾਈਨ, ਆਪਣੇ ਵੱਲੋਂ, ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਮਿੰਕੋਵਸਕੀ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਨੂੰ ਪਹਿਲਾਂ ਖਾਰਿਜ ਕਰਦਾ ਸੀ।, ਤੇ ਇਸਨੂੰ überflüssige Gelehrsamkeit (ਜਰੂਰਤ ਤੋਂ ਜਿਆਦਾ ਗਿਆਨ) ਕਹਿੰਦਾ ਸੀ। ਫੇਰ ਵੀ, 1907 ਵਿੱਚ ਸੁਰੂ ਕੀਤੀ ਜਾਣ ਵਾਲ਼ੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਾਸਤੇ ਉਸਦੀ ਰੀਸਰਚ ਨੂੰ ਪੂਰੀ ਕਰਨ ਦੇ ਚੱਕਰ ਵਿੱਚ, ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਰੇਖਾਗਣਿਤਿਕ ਵਿਆਖਿਆ ਮਹੱਤਵਪੂਰਨ ਹੋਣੀ ਸਾਬਤ ਹੋ ਗਈ, ਅਤੇ 1916 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ ਨੇ ਮਿੰਕੋਵਸਕੀ ਪ੍ਰਤਿ ਆਪਣੀ ਸ਼ੰਕਾ ਪੂਰੀ ਤਰਾਂ ਸਵੀਕਾਰ ਕਰ ਲਈ, ਜਿਸਦੀ ਵਿਆਖਿਆ ਨੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਪ੍ਰਤਿ ਤਬਦੀਲੀ ਨੂੰ ਬਹੁਤ ਸੁਵਿਧਾ ਪ੍ਰਦਾਨ ਕੀਤੀ।[4]: 151–152 ਕਿਉਂਕਿ ਸਪੇਸਟਾਈਮ ਦੀਆਂ ਹੋਰ ਕਿਸਮਾਂ ਵੀ ਹੁੰਦੀਆਂ ਹਨ, ਜਿਵੇਂ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ, ਇਸਲਈ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਸਪੇਸਟਾਈਮ ਅੱਜਕੱਲ “ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ” ਦੇ ਨਾਮਕ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ।
Remove ads
ਵਾਧੂ ਵੇਰਵੇ
- ਸਟੈੱਲਰ ਅਬੈਰੇਸ਼ਨ ਉਦੋਂ ਪੈਦਾ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਕਿਸੇ ਔਬਜ਼ਰਵਰ ਦੀ ਗਤੀ ਤਾਰੇ ਦੀ ਰੋਸ਼ਨੀ ਦੇ ਰਸਤੇ ਪ੍ਰਤਿ ਇੱਕ ਸਮਕੋਣ ਤੇ ਕੰਪੋਨੈਂਟ ਰੱਖਦਾ ਹੈ। ਚਿੱਤਰ. 1‑3 (bottom left) ਸਮਝਾਉਂਦਾ ਹੈ ਕਿ ਅਬੈਰੇਸ਼ਨ ਦਾ ਨਿਰੀਖਤ ਪ੍ਰਭਾਵ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ: ਕਿਸੇ ਤਾਰੇ ਨੂੰ ਆਈਪੀਸ ਅੰਦਰ ਕੇਂਦ੍ਰਿਤ ਕਰਨ ਲਈ, ਟੈਲੀਸਕੋਪ ਜਰੂਰ ਹੀ ਤਾਰੇ ਦੀ ਵਾਸਤਵਿਕ ਪੁਜੀਸ਼ਨ ਤੋਂ ਧਰਤੀ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਘੁਮਾਉ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਚਿੱਤਰ. 1‑3 (bottom right) ਅਨੁਮਾਨਿਤ ਏੋਇਥਰ (ਨੀਲੇ ਰੰਗ ਵਿੱਚ) ਅੰਦਰ ਪਾਈ ਗਈ ਇੱਕ ਟੈਲੀਸਕੋਪ ਦਿਖਾਉਂਦਾ ਹੈ ਅਤੇ ਸਮਝਾਉਂਦਾ ਹੈ ਕਿਵੇਂ ਏਇਥਰ ਡ੍ਰੈਗਿੰਗ- ਜੇਕਰ ਵਾਸਤਵਿਕ ਹੋਵੇ- ਧਰਤੀ ਨਾਲ ਜੁੜੀਆਂ ਟੈਲੀਸਕੋਪਾਂ ਲਈ ਅਬੈਰੇਸ਼ਨ ਨੂੰ ਅਲੋਪ ਕਰ ਸਕਦਾ ਹੈ; ਇਹ ਕਿਸੇ ਵੀ ਤਾਰੇ ਦੀ ਅਨੁਮਾਨਿਤ ਲੋਕੇਸ਼ਨ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰ ਸਕਦਾ ਹੈ ਅਤੇ ਇਹ ਹਮੇਸ਼ਾ ਹੀ ਆਈਪੀਸਾਂ ਅੰਦਰ ਕੇਂਦ੍ਰਿਤ ਰਹਿ ਸਕਦਾ ਹੋਵੇਗਾ।
Remove ads
ਨੋਟਸ
- ਤਤਕਾਲੀਨਤਾ ਨੂੰ ਪ੍ਰੰਪਰਾ ਦਾ ਇੱਕ ਮਸਲਾ ਬਿਆਨ ਕਰਕੇ, ਪੋਆਇਨਕੇਅਰ ਦਾ ਅਰਥ ਸੀ ਕਿ ਸਮੇਂ ਬਾਬਤ ਗੱਲ ਕਰਨ ਵਾਸਤੇ, ਸਾਨੂੰ ਘੜੀਆਂ ਨੂੰ ਸਿੰਕ੍ਰੋਨਾਇਜ਼ ਕਰ ਲੈਣਾ (ਆਪਸ ਵਿੱਚ ਮਿਲਾ ਲੈਣਾ) ਚਾਹੀਦਾ ਹੈ, ਅਤੇ ਘੜੀਆਂ ਦੀ ਸਿੰਕ੍ਰੋਨਾਇਜ਼ੇਸ਼ਨ (ਆਪਸੀ-ਮੇਲ) ਲਾਜ਼ਮੀ ਤੌਰ 'ਤੇ ਇੱਕ ਵਿਸ਼ੇਸ਼, ਕ੍ਰਿਆਤਮਿਕ ਵਿਧੀ (ਕਨਵੈਂਸ਼ਨ) ਦੁਆਰਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਕਥਨ ਨੇ ਨਿਊਟਨ ਤੋਂ ਲੈ ਕੇ ਹੁਣ ਤੱਕ ਦੀ ਇੱਕ ਬੁਨਿਆਦੀ ਦਾਰਸ਼ਨਿਕ ਬ੍ਰੇਕ ਪੇਸ਼ ਕੀਤੀ, ਜਿਸਨੇ ਸਮੇਂ ਨੂੰ ਇੱਕ ਸ਼ੁੱਧ, ਸੱਚਾ ਵਕਤ ਸਮਝਿਆ ਸੀ ਜੋ ਉਸਦੀ ਰੋਜ਼ਾਨਾ ਜਿੰਦਗੀ ਦੀਆਂ ਗਲਤ ਘੜੀਆਂ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਤੋਂ ਸੁਤੰਤਰ ਸੀ। ਇਸ ਬਿਆਨ ਨੇ ਪ੍ਰਭਾਸ਼ਾਲੀ ਦਾਰਸ਼ਨਿਕ ਹੈਨਰੀ ਬ੍ਰਗਸਨ ਵਿਰੁੱਧ ਇੱਕ ਸਿੱਧਾ ਅਟੈਕ ਕੀਤਾ, ਜਿਸਦਾ ਤਰਕ ਸੀ ਕਿ, ਵਕਤ, ਤਤਕਾਲੀਨਤਾ, ਅਤੇ ਅੰਤ੍ਰਾਲ ਸਹਿਜ ਗਿਆਨ ਦੀ ਸਮਝ ਦੇ ਮਸਲੇ ਹਨ। ਗੈਲੀਸਨ (2003), “ਪਹਿਲਾਂ ਤੋਂ ਹਵਾਲਾ ਦਿੱਤੇ ਕੰਮ”
- ਪੋਆਇਨਕੇਅਰ ਦੁਆਰਾ ਅਪਣਾਈ ਗਈ ਕ੍ਰਿਆਤਮਿਕ ਵਿਧੀ ਲਾਜ਼ਮੀ ਤੌਰ 'ਤੇ ਆਈਨਸਟਾਈਨ ਸਿੰਕ੍ਰੋਨਾਇਜ਼ੇਸ਼ਨ ਨਾਮਕ ਵਿਧੀ ਨਾਲ ਮਿਲਦੀ ਜੁਲਦੀ ਸੀ, ਭਾਵੇਂ ਇਸਦਾ ਇੱਕ ਬਦਲ, ਮੱਧ 19ਵੀਂ ਸਦੀ ਵਿੱਚ ਟੈਲੀਗ੍ਰਾਫ੍ਰਾਂ ਰਾਹੀਂ ਵੱਡੇ ਪੱਧਰ ਤੇ ਵਰਤੀ ਜਾਂਦੀ ਵਿਧੀ ਰਹੀ ਸੀ। ਬੁਨਿਆਦੀ ਤੌਰ 'ਤੇ, ਦੋ ਕਲੌਕਾਂ ਨੂੰ ਸਿੰਕ੍ਰੋਨਾਇਜ਼ ਕਰਨ ਵਾਸਤੇ, ਇੱਕ ਇਨਸਾਨ ਦੂਜੇ ਇਨਸਾਨ ਵੱਲ ਇੱਕ ਪ੍ਰਕਾਸ਼ ਦਾ ਸਿਗਨਲ ਭੇਜਦਾ ਹੈ, ਅਤੇ ਓਸ ਸਮੇਂ ਨੂੰ ਅਡਜਸਟ ਕਰਦਾ ਹੈ ਜੋ ਪ੍ਰਕਾਸ਼ ਦੀ ਫਲੈਸ਼ ਨੂੰ ਪਹੁੰਚਣ ਨੂੰ ਲਗਦਾ ਹੈ। ਗੈਲੀਸਨ (2003), ਪਹਿਲਾਂ ਤੋਂ ਕਿਹਾ ਗਿਆ ਕਥਨ।
- ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ ਦੀ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਸਫੀਅਰ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) (ਜਿਵੇਂ ਲਾਈ ਸਫੀਅਰ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਜਾਂ ਕਨਫ੍ਰਮਲ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਜੋ 19ਵੀਂ ਸਦੀ ਵਿੱਚ ਵਿਕਸਿਤ ਕੀਤੀ ਗਈ ਸੀ, ਦੇ ਕੁੱਝ ਬਦਲਾਂ ਨਾਲ ਨਜ਼ਦੀਕੀ ਤੌਰ 'ਤੇ ਸਬੰਧਤ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, ਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਸਫੈਰੀਕਲ ਵੇਵ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ ਦਾ ਇੱਕ ਸਪੈਸ਼ਲ ਮਾਮਲਾ ਹੁੰਦਾ ਹੈ। ਵਿਸ਼ੇਸ਼ ਕਰਕੇ, ਜਿਵੇਂ ਪੋਆਇਨਕੇਅਰ (1912) ਅਤੇ ਹੋਰਾਂ ਨੇ ਇਸ਼ਾਰਾ ਕੀਤਾ ਸੀ ਕਿ ਇਹ ਸਰਲ ਤੌਰ 'ਤੇ ਲੈਗੁਇੱਰੇ ਗਰੁੱਪ ਪ੍ਰਤਿ ਆਇਸੋਮੌਰਫਿਕ ਹੈ, ਜੋ ਸਫੀਅਰਾਂ ਨੂੰ ਸਫੀਅਰਾਂ ਅਤੇ ਸਤਹਿਾਂ ਨੂੰ ਸਤਹਿਾਂ ਵਿੱਚ ਪਰਵਰਤਿਤ ਕਰਦਾ ਹੈ। ਮੋਬੀਅਸ ਗਰੁੱਪ (ਜੋ ਹਾਈਪ੍ਰਬੋਲਿਕ R3 ਵਿੱਚ ਆਈਸੋਮੀਟ੍ਰੀਆਂ ਦੇ ਗਰੁੱਪ ਪ੍ਰਤਿ ਆਇਸੋਮੌਰਫਿਕ ਹੁੰਦਾ ਹੈ) ਅਤੇ ਲੌਰੰਟਜ਼ ਗਰੁੱਪ ਦਰਮਿਆਨ ਆਇਸੋਮੌਰਫਿਜ਼ਮ ਵੀ ਚੰਗੀ ਤਰਾਂ ਪਤਾ ਲਗਾਈ ਜਾ ਚੁੱਕੀ ਹੈ।
- (ਅੱਗੇ ਲਿਖੇ ਵਿੱਚ ਗਰੁੱਪ G∞ ਗੈਲੀਲੀਅਨ ਗਰੁੱਪ ਹੇ ਅਤੇ ਗਰੁੱਪ Gc ਲੌਰੰਟਜ਼ ਗਰੁੱਪ ਹੈ।) "ਇਸਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਇਹ ਸਪਸ਼ਟ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਗਰੁੱਪ Gc,c = ∞ ਵਾਸਤੇ ਹੱਦ ਅੰਦਰ, ਯਾਨਿ ਕਿ, ਗਰੁੱਪ G∞ ਦੀ ਤਰਾਂ, ਇੰਨਬਿੰਨ ਨਿਊਟੋਨੀਅਨ ਮਕੈਨਿਕਸ ਨਾਲ ਸਬੰਧਤ ਪੂਰਾ ਗਰੁੱਪ ਬਣ ਜਾਂਦਾ ਹੈ। ਮਾਮਲਿਆਂ ਦੀ ਇਸ ਅਵਸਥਾ ਅੰਦਰ, ਅਤੇ ਕਿਉਂਕਿ Gc ਗਣਿਤਿਕ ਤੌਰ 'ਤੇ G∞ ਨਾਲ਼ੋਂ ਜਿਆਦਾ ਬੁੱਧੀਯੋਗ ਹੈ, ਇਸਲਈ ਕੋਈ ਗਣਿਤਸ਼ਾਸਤਰੀ, ਸੁਤੰਤਰ ਕਲਪਨਾ ਦੀ ਖੇਡ ਰਾਹੀਂ, ਇਹ ਸੋਚੇਗਾ ਕਿ ਕੁਦਰਤੀ ਵਰਤਾਰੇ ਦਰਅਸਲ ਇੱਕ ਸਥਿਰਤਾ ਰੱਖਦੇ ਹਨ, ਗਰੁੱਪ G∞ ਲਈ ਨਹੀਂ, ਸਗੋਂ ਇੱਕ ਅਜਿਹੇ ਗਰੁੱਪ Gc ਵਾਸਤੇ, ਜਿੱਥੇ c ਨਿਸਚਿਤ ਤੌਰ 'ਤੇ ਸੀਮਤ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਸਧਾਰਨ ਨਾਪ ਇਕਾਈਆਂ ਵਰਤਦੇ ਹੋਏ ਹੀ ਵਿਸ਼ਾਲ ਹੁੰਦੀ ਹੈ।" ਮਿੰਕੋਵਸਕੀ (1909), ਪਹਿਲਾਂ ਤੋਂ ਕਿਹਾ ਗਿਆ ਕਥਨ
Remove ads
ਹਵਾਲੇ
ਬਾਹਰੀ ਲਿੰਕ
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads