Najlepsze pytania
Chronologia
Czat
Perspektywa

Algorytm Floyda-Warshalla

Z Wikipedii, wolnej encyklopedii

Algorytm Floyda-Warshalla
Remove ads

Algorytm Floyda-Warshalla wykorzystujący metodę programowania dynamicznego algorytm służący do znajdowania najkrótszych ścieżek pomiędzy wszystkimi parami wierzchołków w grafie ważonym[1]. Graf może zawierać gałęzie zarówno o dodatniej i o ujemnej wadze („długości”), lecz nie może zawierać ujemnych cykli (cykli, w których suma wag krawędzi jest ujemna).

Szybkie fakty Rodzaj, Struktura danych ...
Remove ads

Opis algorytmu

Algorytm Floyda-Warshalla korzysta z tego, że jeśli najkrótsza ścieżka pomiędzy wierzchołkami i prowadzi przez wierzchołek to jest ona połączeniem najkrótszych ścieżek pomiędzy wierzchołkami i oraz i Na początku działania algorytmu inicjowana jest tablica długości najkrótszych ścieżek, tak że dla każdej pary wierzchołków ich odległość wynosi:

Algorytm jest dynamiczny i w kolejnych krokach włącza do swoich obliczeń ścieżki przechodzące przez kolejne wierzchołki. Tak więc w -tym kroku algorytm zajmie się sprawdzaniem dla każdej pary wierzchołków, czy nie da się skrócić (lub utworzyć) ścieżki pomiędzy nimi przechodzącej przez wierzchołek numer (kolejność wierzchołków jest obojętna, ważne tylko, żeby nie zmieniała się w trakcie działania programu). Po wykonaniu takich kroków długości najkrótszych ścieżek są już wyliczone.

Wydajność algorytmu

  • Złożoność obliczeniowa: [1]
  • Złożoność pamięciowa: [2]
Remove ads

Zapis w pseudokodzie

Dla grafu i funkcji wagowej otrzymamy tablicę odległości pomiędzy wierzchołkami i

Floyd-Warshall(G,w)

dla każdego wierzchołka v1 w V[G] wykonaj
  dla każdego wierzchołka v2 w V[G] wykonaj
    d[v1][v2] = nieskończone
    poprzednik[v1][v2] = niezdefiniowane
  d[v1][v1] = 0
dla każdej krawędzi (v1,v2) w E[G]
  d[v1][v2] = w(v1,v2)
  poprzednik[v1][v2] = v1
dla każdego wierzchołka u w V[G] wykonaj
  dla każdego wierzchołka v1 w V[G] wykonaj
    dla każdego wierzchołka v2 w V[G] wykonaj
      jeżeli d[v1][v2] > d[v1][u] + d[u][v2] to
        d[v1][v2] = d[v1][u] + d[u][v2]
        poprzednik[v1][v2] = poprzednik[u][v2]
Remove ads

Zobacz też

Przypisy

Bibliografia

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads