Najlepsze pytania
Chronologia
Czat
Perspektywa

Iloczyn diadyczny

iloczyn tensorowy 2-go rzędu napisany w notacji iloczynu diadycznego dwóch wektorów Z Wikipedii, wolnej encyklopedii

Remove ads

Iloczyn diadyczny – to iloczyn wektora (kolumnowego) z wektorem (wierszowym) tego samego wymiaru, dający tensor 2-go rzędu, np.

Iloczyn diadyczny jest szczególnym przypadkiem iloczynu tensorowego wektorów (gdzie wymiary wektorów nie muszą być równe, a wektory mogą być dowolnego typu, np. 2 wektory kolumnowe lub 2 wierszowe) lub ogólniej – iloczynu tensorowego macierzy.

Remove ads

Definicja ogólna

Podsumowanie
Perspektywa

Jeżeli dane są:

(1) baza wektorów kolumnowych przestrzeni wektorowej

(2) odpowiadająca jej baza wektorów wierszowych

(3) wektory zapisane w tych bazach

to iloczyn diadyczny ma postać

gdzie macierz wymiaru której element a pozostałe elementy są równe zeru. Macierze te stanowią bazę tensora, tzn. dowolny tensor rzędu 2-go można wyrazić jako kombinację liniową tych macierzy bazowych.

Np. dla przestrzeni wektorowej 3-wymiarowej mamy 9 macierzy np.

Remove ads

Twierdzenie o śladzie iloczynu diadycznego

Podsumowanie
Perspektywa

Dowodzi się, że w ogólności słuszne jest twierdzenie

Tw. Ślad iloczynu diadycznego wektorów jest równy ich iloczynowi skalarnemu

Przykład: Niech będą dane wektory

Ich iloczyn diadyczny wynosi

oraz ślad macierzy wynosi

– i jest on równy iloczynowi skalarnemu wektorów gdyż

Remove ads

Nieprzemienność iloczynu diadycznego

Podsumowanie
Perspektywa

Przykład: Niech będą dane wektory

Ich iloczyn diadyczny wynosi

Porównując powyższy wynik z iloczynem diadycznym z wcześniejszego rozdziału, widać, że iloczyn diadyczny nie jest przemienny

Tylko w szczególnych przypadkach może zachodzić przemienność iloczynu diadycznego.

Remove ads

Zobacz też

Bibliografia

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads