Top Qs
Linha do tempo
Chat
Contexto

Barry Simon

matemático norte-americano Da Wikipédia, a enciclopédia livre

Barry Simon
Remove ads

Barry Martin Simon (Nova Iorque, 16 de abril de 1946) é um físico matemático estadunidense, professor de matemática e física teórica do Instituto de Tecnologia da Califórnia.[2]

Factos rápidos

Foi palestrante convidado do Congresso Internacional de Matemáticos em Vancouver (1974: Approximation of Feynman Integrals and Markov fields by spin systems). Recebeu o Prêmio Henri Poincaré de 2012 e o Prêmio Bolyai de 2015. É desde 2013 fellow da American Mathematical Society e desde 1981 da American Physical Society. Em 2016 recebeu o Prêmio Leroy P. Steele por sua carreira, e o Prêmio Dannie Heineman de Física Matemática de 2018.

Em 1990 foi eleito membro correspondente da Academia Austríaca de Ciências.[3] É fellow da Academia de Artes e Ciências dos Estados Unidos (2005).

Remove ads

Livros

  • Quantum theory of Hamiltonians defined by quadratic forms. Princeton 1971
  • The Euclidean Quantum Field Theory. Princeton 1974
  • Trace Ideals and their applications. Cambridge 1979, 2. Edição AMS 2005
  • Functional integration and quantum physics. Academic Press 1979, 2. Edição AMS Chelsea Publishing 2005
  • Convexity. An analytic viewpoint. Cambridge University Press 2011
  • Statistical mechanics of lattices gases. Volume 1, Princeton 1993
  • com Michael C. Reed: Methods of Modern Mathematical Physics. Bd.1: Functional Analysis. Academic Press, 1972, 2. Auflage 1980; Volume 2: Fourier Analysis, Self-Adjointness. Academic Press, 1975; Volume 3: Scattering Theory. Academic Press, 1978; Volume 4: Analysis of Operators. Academic Press, 1977
  • com H. Cycon, R. Froese, W. Kirsch: Schrödinger Operators. Springer 1987, 2. Edição 2008, ISBN 978-3-540-16758-7.
  • Orthogonal polynomials on the unit circle, 2 Volumes, AMS Colloquium publications 2005
  • Editor com Lieb, Wightman: Studies in mathematical physics. Princeton 1976 (Bargmann-Festschrift), e por Simon: On the number of bound states of two body Schrödinger operators, a review e Quantum dynamics: from automorphism to hamiltonian.
  • Szegö´s theorem and its descendants. Spectral theory for perturbations of orthogonal polynomials, Princeton University Press 2011
  • A comprehensive course in analysis, 5 Volumes, AMS 2015
    • Volume 1: Real analysis, Volume 2 A: Basic complex analysis, Volume 2 B: Advanced complex analysis, Volume 3: Harmonic analysis, Volume 4: Operator Theory
Remove ads

Artigos selecionados

  • Resonances in n-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory, Annals of Math. 97 (1973), 247-274
  • com F. Guerra, L. Rosen: The quantum theory as classical statistical mechanics, Annals of Math. 101 (1975), 111-259
  • com E. Lieb: The Thomas-Fermi theory of atoms, molecules and solids, Advances in Math. 23 (1977), 22-116
  • com J. Fröhlich, T. Spencer:Infrared bounds, phase transitions and continuous symmetry breaking, Commun. Math. Phys. 50 (1976), 79-85
  • com P. Perry, I. Sigal: Spectral analysis of multiparticle Schrödinger operators, Annals of Math. 114 (1981), 519-567
  • com M. Aizenman: Brownian motion and Harnack’s inequality for Schrödinger operators, Commun. Pure Appl. Math. 35 (1982), 209-273
  • Semiclassical analysis of low lying eigenvalues, II. Tunneling, Annals of Math. 120 (1984), 89-118
  • Holonomy, the quantum adiabatic theorem and Berry’s phase, Phys. Rev. Lett. 51 (1983), 2167-2170
  • com T. Wolff: Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, Commun. Pure Appl. Math. 39 (1986), 75-90
  • Operators with singular continuous spectrum: I. General operators, Annals of of Math. 141 (1995), 131-145
  • The classical moment problem as a self-adjoint finite difference operator, Advances in Math. 137 (1998), 82-203
  • com Y. Last: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), 329-367
  • A new approach to inverse spectral theory, I. Fundamental formalism, Annals of Math. 150 (1999), 1029-1057
  • com F. Gesztesy: A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure, Annals of Math. 152 (2000), 593-643
  • com R. Killip: Sum rules for Jacobi matrices and their applications to spectral theory, Annals of Math. 158 (2003), 253-321
  • com D. Damanik: Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegö asymptotics, Invent. Math. 165 (2006), 1-50
Remove ads

Bibliografia

  • Fritz Gesztesy, Simon, Percy Deift, Cherie Galvez, Peter Perry, Wilhelm Schlag (Hrsg.): Spectral theory and mathematical physics. Oxford University Press 2007 (Festschrift zum 60. Geburtstag von Simon).
  • Fritz Gesztesy: From mathematical physics to analysis, a walk in Barry Simon´s garden, Notices AMS, August, September 2016, Teil 1

Referências

  1. Barry Simon, I.B.M. Professor of Mathematics and Theoretical Physics, Emeritus. Página pessoal no Instituto de Tecnologia da Califórnia
  2. «Mitglieder der ÖAW: Barry Simon» (em alemão). Österreichische Akademie der Wissenschaften. Consultado em 22 de fevereiro de 2018

Ligações externas

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads