Top Qs
Linha do tempo
Chat
Contexto
Coeficiente de resistência aerodinâmica
Da Wikipédia, a enciclopédia livre
Remove ads
Em dinâmica dos fluidos, o coeficiente de resistência aerodinâmica (comumente notado como ou ), também chamado coeficiente de arrasto e ou coeficiente aerodinâmico, é um número adimensional que é usado para quantificar o arrasto ou resistência de um objeto em um meio fluido tal como o ar ou a água, utilizado para quantificar a força exercida por um fluido sobre determinada superfície. É usado na equação do arrasto, onde um coeficiente de arrasto mais baixo indica que o objeto terá menos arrasto aerodinâmico ou hidrodinâmico. O coeficiente de arrasto é sempre associado com uma área de superfície particular.[1]

O coeficiente de arrasto de qualquer objeto compreende os efeitos de dois contribuidores básicos do arrasto fluidodinâmico: fricção de superfície e arrasto de forma. O coeficiente de arrasto de um aerofólio ou hidrofólio sustentante também inclui os efeitos de arrasto induzido.[2][3] O coeficiente de arrasto de uma estrutura completa, tal como uma aeronave, também inclui os efeitos de arrasto de interferência.[4][5]
Remove ads
Definição
Resumir
Perspectiva
O coeficiente de arrasto é definido como:
onde:
- é a força de arrasto, a qual é por definição o componente de força na direção da velocidade de fluxo,[nota 1]
- é a densidade de massa de um fluido,[nota 2]
- é a velocidade do objeto relativo ao fluido, e
- é a área de referência.
A área de referência depende de qual tipo de coeficiente de arrasto está sendo medido. Para automóveis e muitos outros objetos, a área de referência é a área de projeção frontal do veículo. Esta pode não necessariamente ser a área da seção transversal do veículo, dependendo sobre onde a seção transversal é tomada. Por exemplo, para uma esfera (note-se que esta não é a área de superfície = ).
Para aerofólios, a área de referência é a área da superfície alar. Dado que esta tende a ser uma área maior comparada à área da projeção frontal, os coeficientes de arrasto resultantes tendem a ser baixos, muito menores que para um carro com o mesmo arrasto, área frontal e mesma velocidade.
Dirigíveis e alguns corpos de revolução usam o coeficiente de arrasto columétrico, no qual a área de referência é o quadrado da raiz cúbica do volume do dirigível. Corpos submersos em fluxo alinhado usa a superfície molhada.
Dois objetos tendo a mesma área de referência movendo-se na mesma velocidade através de um fluido experimentarão um,a força de arrasto proporcional a seus respectivos coeficientes de arrasto. Coeficientes para objetos em fluxos não alinhados podem ser 1 ou mais, para objetos fluxo alinhado muito menos.
Remove ads
Origem
Resumir
Perspectiva

A equação do arrasto:
Uma placa circular plana tem um igual a 1, ainda que a turbulência que se forma em volta dela aumente esse valor para 1,2, mesmo valor para o Usain Bolt.[6]
Uma gota de água, considerada com uma aerodinâmica baixíssima, quase perfeita, tem um de 0,05.
Remove ads
Exemplos de coeficientes de arrasto
Comuns
Em geral, , não é uma constante absoluta para uma determinada forma do corpo. Ela varia com a velocidade do fluxo de ar (ou normalmente com o coeficiente de Reynolds). Uma esfera lisa, por exemplo, tem um cd, que varia de valores altos para fluxo laminar a 0,47 para fluxo turbulento. Embora o coeficiente de arrasto diminua com o aumento de Re, a força de arrasto aumenta.
Aeronaves
Como mencionado acima, as aeronaves usam a área das asas como a área de referência ao calcular o , enquanto os automóveis (e muitos outros objetos) usam área transversal frontal; Assim, os coeficientes não são diretamente comparáveis entre essas classes de veículos.
Remove ads
Notas
- Ver força de sustentação e vibração induzida por vórtice para possíveis componentes de força transversos à direção do fluxo.
- Note-se que para a atmosfera da Terra, a densidade do ar pode ser encontrada usando-se a equação barométrica. O ar possui densidade de 1,293 kg/m3 a 0 °C e 1 atmosfera
Referências
- McCormick, Barnes W. (1979): Aerodynamics, Aeronautics, and Flight Mechanics. p. 24, John Wiley & Sons, Inc., New York, ISBN 0-471-03032-5
- Clancy, L. J.: Aerodynamics. Section 5.18
- Abbott, Ira H., and Von Doenhoff, Albert E.: Theory of Wing Sections. Sections 1.2 and 1.3
- Clancy, L. J.: Aerodynamics. Section 11.17
- Hernandez-Gomez, J J; Marquina, V; Gomez, R W (25 de julho de 2013). «On the performance of Usain Bolt in the 100 m sprint». IOP. Eur. J. Phys. 34 (5). 1227 páginas. doi:10.1088/0143-0807/34/5/1227. Consultado em 23 de abril de 2016
- Marc Carter (17 de fevereiro de 2009). «Geneva 09' Preview: 2010 Mercedes-Benz E-Class Coupe Unveiled». thetorquereport.com. Consultado em 19 de julho de 2018
- «The drag coefficient of an object in a moving fluid influence drag force». engineeringtoolbox.com. Consultado em 19 de julho de 2018
- «Drag Coefficients». Aerodynamic Database. Consultado em 19 de julho de 2018
- Jeff Scott (11 de julho de 2004). «Drag Coefficient & Lifting Line Theory». aerospaceweb.org. Consultado em 19 de julho de 2018
- «Boeing 787 -8 (Dreamliner) sample analysis. (2005)». lissys.demon.co.uk. Consultado em 19 de julho de 2018
Remove ads
Ligações externas
Ver também
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads