Top Qs
Linha do tempo
Chat
Contexto

Nabla

símbolo usado em matemática e engenharia Da Wikipédia, a enciclopédia livre

Nabla
Remove ads

Nabla é um símbolo representado por . O nome está associado à palavra grega νάβλα (nabla)[1] que designa um instrumento musical - o nablo[2], uma harpa de origem fenícia, semelhante à lira[3] - que teria uma forma parecida à do símbolo.[4]

Thumb
Este é o símbolo nomeado Nabla

O símbolo nabla — também chamado de grad[5], del ou atled (delta ao contrário)[6] — foi introduzido por William Rowan Hamilton em 1837, mas não com o objetivo de representar o gradiente de uma função. Sempre que Hamilton precisava resumir alguma operação, usava esse triângulo invertido.

Posteriormente, o símbolo foi batizado por Peter Guthrie Tait (1831–1901), um colega de Maxwell. Tait chamou o ∇ de “nabla”, por achar que a imagem se parecia a uma lira de origem hebraica que tinha esse nome.[7]

C. T. Tai escreveu um relatório técnico sobre “usos impróprios” de ∇ em artigos teóricos de análise vetorial.[8]

Remove ads

Cálculo

Resumir
Perspectiva

Cálculo Vetorial

No cálculo vetorial, o operador , pronunciado nabla ou del, é um símbolo usado para denotar uma série de operadores diferenciais definidos em campos escalares e vetorias, como gradiente, divergente e rotacional. Ele é definido simbolicamente como:

Rigorosamente falando, o operador del não é um operador diferencial, mas antes uma mnemónica, que ajuda a lembrar de uma série de operadores diferenciais:


O rotacional pode ser representado pelo seguinte determinante simbólico, que funciona como mnemónica, para lembrar mais facilmente a definição:

[9]

Remove ads

Referências

  1. «νάβλα». WordSense Dictionary (em inglês). Consultado em 14 de julho de 2025
  2. Infopédia. «nablo | Dicionário Infopédia da Língua Portuguesa». Dicionários infopédia da Porto Editora. Consultado em 14 de julho de 2025
  3. John R. Taylor (1 de janeiro de 2013). Mecânica Clássica. [S.l.]: Bookman Editora. p. 117. ISBN 978-85-8260-088-7
  4. Howard Anton; Irl Bivens; Stephen Davis (1 de setembro de 2014). Cálculo - Volume II - 10.ed. [S.l.]: Bookman Editora. p. 963. ISBN 978-85-8260-246-1
  5. Alexandre Cherman (1 de fevereiro de 2004). Sobre os Ombros de Gigantes: Uma história da física. [S.l.]: Zahar. p. 88. ISBN 978-85-378-0567-1
  6. C. T. Tai (1994). «A Survey of the Improper Uses of ∇ in Vector Analysis». The University of Michigan
  7. «Cálculo com operador nabla». UFRGS. UFRGS - IME. 3 de outubro de 2023
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads