Loading AI tools
teoria da geometria da gravidade de Albert Einstein (1879-1955) Da Wikipédia, a enciclopédia livre
Relatividade geral, também conhecida como teoria da relatividade geral, é uma teoria geométrica da gravitação publicada por Albert Einstein em 1915 e a descrição atual da gravitação na física moderna. É um conjunto de hipóteses que generaliza a relatividade especial e a lei da gravitação universal de Newton, fornecendo uma descrição unificada da gravidade como uma propriedade geométrica do espaço e do tempo, ou espaço-tempo. Em particular, a "curvatura do espaço-tempo" está diretamente relacionada à energia e ao momento de qualquer matéria e radiação presente. A relação é especificada pelas equações de campo de Einstein, um sistema de equações diferenciais parciais.
Muitas previsões da relatividade geral diferem significativamente das da física clássica, especialmente no que respeita à passagem do tempo, a geometria do espaço, o movimento dos corpos em queda livre, e a propagação da luz. Exemplos de tais diferenças incluem a dilatação do tempo gravitacional, lente gravitacional, o desvio gravitacional para o vermelho da luz, e o tempo de atraso gravitacional. Previsões da relatividade geral foram confirmadas em todas as observações e experimentos até o presente. Embora a relatividade geral não seja a única teoria relativística da gravidade, é a mais simples das teorias que são consistentes com dados experimentais. No entanto, há questões ainda sem resposta, sendo a mais fundamental delas explicar como a relatividade geral pode ser conciliada com as leis da física quântica para produzir uma teoria completa e auto-consistente da gravitação quântica.
A teoria de Einstein tem importantes implicações astrofísicas. Ela aponta para a existência de buracos negros — regiões no espaço onde o espaço e o tempo são distorcidos de tal forma que nada, nem mesmo a luz, pode escapar — como um estado final para estrelas massivas. Há evidências de que esses buracos negros estelares, bem como outras variedades maciças de buracos negros são responsáveis pela intensa radiação emitida por certos tipos de objetos astronômicos, tais como núcleos ativos de galáxias ou microquasares. O desvio da luz pela gravidade pode levar ao fenômeno de lente gravitacional, onde várias imagens do mesmo objeto astronômico distante são visíveis no céu. A relatividade geral também prevê a existência de ondas gravitacionais, que já foram medidas indiretamente; uma medida direta, no final de 2015, por pesquisadores do projeto LIGO (Observatório de Ondas Gravitacionais por Interferômetro Laser) confirmou as "distorções no espaço e no tempo" causadas por um par de buracos negros com 30 massas solares em processo de fusão. Além disso, a relatividade geral é a base dos atuais modelos cosmológicos de um universo em expansão.
Amplamente reconhecida como uma teoria de grande beleza matemática, a relatividade geral tem sido frequentemente descrita como a mais bela de todas as teorias físicas existentes.[2]
Logo depois de publicar a teoria da relatividade especial em 1905, Einstein começou a pensar sobre como incorporar a gravidade em sua nova estrutura relativista. Em 1907, começando com um simples experimento mental envolvendo um observador em queda livre, embarcou no que seria uma busca de oito anos por uma teoria relativística da gravidade. Após inúmeros desvios e falsos começos, seu trabalho culminou na apresentação à Academia de Ciências da Prússia, em novembro de 1915, do que hoje são conhecidas como as equações de campo de Einstein, que formam o núcleo da teoria geral da relatividade.[3] Essas equações especificam como a geometria do espaço e do tempo é influenciada por qualquer matéria e radiação presentes.[4]
As equações de campo de Einstein são não-lineares e consideradas difíceis de solucionar. Einstein usou métodos de aproximação na elaboração das previsões iniciais da teoria. Mas em 1916, o astrofísico Karl Schwarzschild encontrou a primeira solução não trivial exata para as equações de campo, a métrica de Schwarzschild. Esta solução estabeleceu as bases para a descrição das etapas finais do colapso gravitacional e os objetos conhecidos hoje como buracos negros. No mesmo ano, foram realizados os primeiros passos para a generalização da métrica de Schwarzschild para objetos carregados eletricamente, o que acabou resultando na métrica de Reissner-Nordström, agora associada a buracos negros carregados eletricamente.[5] No ano seguinte, Einstein aplicou sua teoria ao universo como um todo, iniciando o campo da cosmologia relativista. Em consonância com o pensamento contemporâneo, assumiu um universo estático, adicionando um novo parâmetro às suas equações de campo originais — a constante cosmológica — para combinar com essa presunção observacional.[6] Em 1929, no entanto, o trabalho de Edwin Powell Hubble e outros mostrava que o nosso universo está se expandindo. Isto é prontamente descrito pelas soluções cosmológicas em expansão encontradas por Alexander Friedmann em 1922, que não exigem uma constante cosmológica. Georges Lemaître usou essas soluções para formular a versão mais antiga dos modelos do Big Bang, em que nosso universo evoluiu a partir de um estado anterior extremamente quente e denso.[7] Einstein declarou mais tarde a constante cosmológica como o maior erro de sua vida.[8]
Durante esse período, a relatividade geral permaneceu como uma curiosidade entre as teorias físicas. Era claramente superior à gravidade newtoniana, sendo consistente com a relatividade especial e contabilizando vários efeitos inexplicados pela teoria clássica. O próprio Einstein havia mostrado em 1915 como sua teoria explicava a precessão anormal do periélio do planeta Mercúrio sem quaisquer parâmetros arbitrários ("fatores de correção").[9] Da mesma forma, uma expedição de 1919 liderada por Arthur Stanley Eddington confirmou a previsão da relatividade geral para a deflexão da luz das estrelas pelo Sol durante o eclipse solar total de 29 de maio,[10] tornando Einstein instantaneamente famoso.[11] No entanto, a teoria tornou-se consolidada na física teórica e na astrofísica apenas com os desenvolvimentos por volta de 1960 e 1975, hoje conhecidos como a era dourada da relatividade geral.[12] Físicos começaram a entender o conceito de buraco negro e a identificar quasares como uma das manifestações astrofísicas desses objetos.[13] Testes cada vez mais precisos com o sistema solar confirmaram o poder preditivo teórico,[14] e a cosmologia relativística também se tornou passível de testes de observação direta.[15]
A relatividade geral pode ser entendida examinando suas semelhanças e desvios da física clássica. O primeiro passo é a compreensão de que a mecânica clássica e a lei da gravidade de Newton admitem uma descrição geométrica. A combinação dessa descrição com as leis da relatividade especial resulta em uma derivação heurística da relatividade geral.[16]
Na base da mecânica clássica está a noção de que o movimento de um corpo pode ser descrito como uma combinação de movimento livre (ou inercial) e desvios desse movimento. Tais desvios são causados por forças externas que agem sobre um corpo de acordo com a segunda lei de Newton, que afirma que a força resultante que atua sobre um corpo é igual à massa desse corpo (inercial) multiplicada por sua aceleração.[17] Os movimentos inerciais preferidos estão relacionados à geometria do espaço e do tempo: nos referenciais padrões da mecânica clássica, objetos em movimento livre se movem ao longo de linhas retas em velocidade constante. Na linguagem moderna, seus caminhos são geodésicos, linhas de universo retas no espaço-tempo curvo.[18]
Por outro lado, pode-se esperar que os movimentos inerciais, uma vez identificados observando os movimentos reais dos corpos e fazendo concessões para as forças externas (como eletromagnetismo ou atrito), possam ser usados para definir a geometria do espaço, bem como uma coordenada de tempo. No entanto, existe uma ambiguidade, uma vez que a gravidade entra em jogo. De acordo com a lei da gravidade de Newton, e verificada independentemente por experimentos como o de Eötvös e seus sucessores (veja experimento de Eötvös), há uma universalidade na queda livre (também conhecida como princípio da equivalência fraca, ou a igualdade universal da massa inercial e gravitacional passiva): a trajetória de um corpo de teste em queda livre depende apenas de sua posição e velocidade inicial, mas não de suas propriedades materiais.[19] Uma versão simplificada disso é incorporada na "experiência do elevador" de Einstein, ilustrada na figura à direita: para um observador numa pequena sala fechada, é impossível decidir, mapeando a trajetória de corpos como uma bola solta, se a sala está em repouso em um campo gravitacional ou em espaço livre a bordo de um foguete que está acelerando a um taxa igual à do campo gravitacional.[20]
Dada a universalidade da queda livre, não há distinção observável entre movimento inercial e movimento sob a influência da força gravitacional. Isso sugere a definição de uma nova classe de movimento inercial, a saber, a dos objetos em queda livre sob a influência da gravidade. Essa nova classe de movimentos preferidos também define uma geometria de espaço e tempo; em termos matemáticos, é o movimento geodésico associado a uma conexão específica que depende do gradiente do potencial gravitacional. O espaço, nessa construção, ainda possui a convencional geometria euclidiana. No entanto, o espaço-tempo como um todo é mais complicado. Como pode ser mostrado usando experimentos de pensamento simples seguindo as trajetórias de queda livre de diferentes partículas de teste, o resultado do transporte de vetores de espaço-tempo que podem denotar a velocidade de uma partícula variará com a trajetória da mesma; matematicamente falando, a conexão newtoniana não é integrável. A partir disso, pode-se deduzir que o espaço-tempo é curvo. A teoria de Newton-Cartan resultante é uma formulação geométrica da gravidade newtoniana usando apenas conceitos covariantes, ou seja, uma descrição que é válida em qualquer sistema de coordenadas desejado.[21] Nessa descrição geométrica, os efeitos de maré — a aceleração relativa de corpos em queda livre — estão relacionados à derivada da conexão, mostrando como a geometria modificada é causada pela presença de massa.[22]
Por mais intrigante que a gravidade geométrica newtoniana possa ser, sua base, a mecânica clássica, é meramente um caso limitante da mecânica relativista (especial).[23] Na linguagem da simetria: onde a gravidade pode ser desprezada, a física é uma invariante de Lorentz como na relatividade especial, e não uma invariante de Galileu como na mecânica clássica. (A definição de simetria da relatividade especial é o grupo de Poincaré, que inclui traduções, rotações e reforços.) As diferenças entre os dois tornam-se significativas quando se trata de velocidades que se aproximam da velocidade da luz e com fenômenos de alta energia.[24]
Com a simetria de Lorentz, estruturas adicionais entram em jogo. Elas são definidas pelo conjunto de cones em luz (ver imagem). Os cones de luz definem uma estrutura causal: para cada evento A, há um conjunto de eventos que podem, em princípio, influenciar ou ser influenciado por A por meio de sinais ou interações que não precisam viajar mais rápido que a luz (como o evento B na imagem) e um conjunto de eventos para os quais tal influência é impossível (como o evento C na imagem). Esses conjuntos são independentes do observador.[25] Em conjunto com a linha do espaço de partículas que caem livremente, os cones de luz podem ser usados para reconstruir a métrica semi-riemanniana do espaço-tempo, pelo menos até um fator escalar positivo. Em termos matemáticos, isso define uma estrutura conformada ou uma geometria conforme.[26]
Relatividade especial é definida na ausência de gravidade, portanto, para aplicações práticas, é um modelo adequado sempre que a gravidade pode ser desprezada. Colocando a gravidade em jogo, e assumindo a universalidade da queda livre, aplica-se um raciocínio análogo como na seção anterior: não há quadros inerciais globais. Em vez disso, existem quadros inerciais aproximados que se movem ao lado de partículas que caem livremente. Traduzido para a linguagem do espaço-tempo: as linhas retas que definem um referencial inercial livre de gravidade são deformadas para linhas curvas em relação umas às outras, sugerindo que a inclusão da gravidade requer uma mudança na geometria do espaço-tempo.[27]
A priori, não está claro se os novos quadros locais em queda livre coincidem com os referenciais nos quais as leis da relatividade especial são válidas — essa teoria é baseada na propagação da luz e, portanto, no eletromagnetismo, que poderia ter um conjunto diferente de quadros preferidos. Mas, usando diferentes suposições sobre os quadros especiais-relativísticos (como ser fixado na terra ou em queda livre), pode-se derivar previsões diferentes para o desvio para o vermelho gravitacional, isto é, a maneira pela qual a frequência de luz se desloca à medida que a luz se propaga através de um campo gravitacional. As medições reais mostram que os quadros de queda livre são aqueles em que a luz se propaga como na relatividade especial.[28] A generalização dessa afirmação, a saber, que as leis da relatividade restrita mantêm uma boa aproximação em referenciais de queda livre (e não rotativos), é conhecida como princípio da equivalência de Einstein, um princípio orientador crucial para generalizar a física relativista especial para incluir a gravidade.[29]
Os mesmos dados experimentais mostram que o tempo medido por relógios num campo gravitacional — tempo próprio, para dar o termo técnico — não segue as regras da relatividade especial. Na linguagem da geometria do espaço-tempo, ela não é medida pela métrica de Minkowski. Como no caso newtoniano, isso sugere uma geometria mais geral. Em escalas pequenas, todos os referenciais que estão em queda livre são equivalentes e aproximadamente minkowskianos. Consequentemente, estamos lidando agora com uma generalização curva do espaço de Minkowski. O tensor métrico que define a geometria — em particular, como os comprimentos e os ângulos são medidos — não é a métrica de Minkowski da relatividade especial, é uma generalização conhecida como métrica semi ou pseudoriemanniana. Além disso, cada métrica riemanniana é naturalmente associada a um tipo particular de conexão, a conexão de Levi-Civita, e esta é, de fato, a conexão que satisfaz o princípio da equivalência e torna o espaço localmente minkowskiano (isto é, em inerciais coordenadas localmente adequadas, a métrica é minkowskiana, e suas primeiras derivadas parciais e os coeficientes de conexão desaparecem).[30]
Tendo formulado a versão relativista e geométrica dos efeitos da gravidade, a questão da fonte da gravidade permanece. Na gravidade newtoniana, a fonte é massa. Na relatividade especial, a massa acaba por ser parte de uma quantidade mais geral chamada de tensor de energia-momento, que inclui densidades de energia e de momento, bem como tensão: pressão e cisalhamento.[31] Usando o princípio da equivalência, este tensor é prontamente generalizado para o espaço-tempo curvo. Com base na analogia com a gravidade newtoniana geométrica, é natural supor que a equação de campo para a gravidade relaciona esse tensor com o tensor de Ricci, que descreve uma classe particular de efeitos de maré: a mudança de volume para uma pequena nuvem de partículas de teste que estão inicialmente em repouso e depois caem livremente. Na relatividade especial, a conservação de energia-momento corresponde à afirmação de que o tensor de energia-momento é livre de divergência. Essa fórmula também é prontamente generalizada para o espaço-tempo curvo, substituindo as derivadas parciais por suas contrapartes curvadas-múltiplas, derivadas covariantes estudadas na geometria diferencial. Com essa condição adicional — a divergência covariante do tensor energia-momento, e, portanto, de qualquer coisa que esteja do outro lado da equação, é zero — o conjunto mais simples de equações é chamado de equações (de campo) de Einstein:
Equações de campo de Einstein
Do lado esquerdo está o tensor de Einstein, uma combinação específica livre de divergência do tensor de Ricci e da métrica. Onde é simétrico. Em particular,
é a curvatura escalar. O próprio tensor de Ricci está relacionado com o tensor de curvatura de Riemann mais geral
Do lado direito, é o tensor energia-momento. Todos os tensores são escritos em notação de índices abstratos.[32] Combinando a previsão da teoria com resultados observacionais para órbitas planetárias ou, equivalentemente, assegurando que o limite de gravidade fraca e baixa velocidade é a mecânica newtoniana, a constante de proporcionalidade pode ser fixada como κ = 8πG/c4, com G a constante gravitacional e c a velocidade da luz.[33] Quando não há nenhuma matéria presente, de modo que o tensor de energia-momento desaparece, os resultados são as equações de vácuo de Einstein,
Existem teorias alternativas à relatividade geral baseadas nas mesmas premissas, que incluem regras e/ou restrições adicionais, levando a diferentes equações de campo. Exemplos são a teoria de Whitehead, a teoria Brans-Dicke, o teleparalelismo, a gravidade de f(R) e a teoria de Einstein-Cartan.[34]
A derivação descrita na seção anterior contém todas as informações necessárias para definir a relatividade geral, descrever suas principais propriedades e abordar uma questão de importância crucial na física, ou seja, como a teoria pode ser usada para a construção de modelos.
A relatividade geral é uma teoria métrica da gravitação. Em seu cerne estão as equações de Einstein, que descrevem a relação entre a geometria de uma variedade pseudoriemanniana quadridimensional que representa o espaço-tempo e a energia-momento contida naquele espaço-tempo.[35] Fenômenos que na mecânica clássica são atribuídos à ação da força da gravidade (tais como queda livre, movimento orbital e trajetórias de espaçonaves), correspondem ao movimento inercial dentro de uma geometria curva do espaço-tempo na relatividade geral; não há força gravitacional desviando objetos de seus caminhos naturais e retos. Em vez disso, a gravidade corresponde a mudanças nas propriedades do espaço e do tempo, que por sua vez alteram os caminhos mais retos possíveis que os objetos seguirão naturalmente.[36] A curvatura é, por sua vez, causada pela energia-momento da matéria. Parafraseando o físico relativista norte-americano John Archibald Wheeler, o espaço-tempo diz à matéria como se mover; a matéria diz ao espaço-tempo como se curvar.[37]
Enquanto a relatividade geral substitui o potencial gravitacional escalar da física clássica por um tensor de grau-dois simétrico, o último reduz-se ao primeiro em certos casos limitantes. Para campos gravitacionais fracos e velocidade lenta em relação à velocidade da luz, as previsões da teoria convergem naquelas da lei de gravitação universal de Newton.[38]
Como é construída usando tensores, a relatividade geral exibe uma covariância geral: suas leis — e outras leis formuladas dentro do quadro geral relativista — assumem a mesma forma em todos os sistemas de coordenadas.[39] Além disso, a teoria não contém quaisquer estruturas de fundo geométricas invariantes, ou seja, é independência-fundo. Assim, satisfaz um princípio geral mais rigoroso da relatividade, ou seja, que as leis da física são as mesmas para todos os observadores.[40] Localmente, como expresso no princípio da equivalência, o espaço-tempo é minkowskiano, e as leis da física exibem a invariância local de Lorentz.[41]
O conceito central da construção de modelos gerais relativísticos é o de uma solução das equações de Einstein. Dadas as equações de Einstein e os cálculos adequados para as propriedades da matéria, tal solução consiste em uma variedade semi-riemanniana específica (geralmente definida dando-se a métrica em coordenadas específicas), e campos de matéria específica definidos nessa variedade. A matéria e a geometria devem satisfazer as equações de Einstein, portanto, em particular, o tensor de energia-momento da matéria deve ser livre de divergências. A matéria deve, é claro, também satisfazer as equações adicionais que foram impostas às suas propriedades. Em suma, tal solução é um modelo do universo que satisfaz as leis da relatividade geral e, possivelmente, leis adicionais que governam qualquer assunto que possa estar presente.[42]
As equações de Einstein são equações diferenciais parciais não-lineares e, como tal, difíceis de serem resolvidas com exatidão.[43] No entanto, várias soluções exatas são conhecidas, embora apenas algumas tenham aplicações físicas diretas.[44] As soluções exatas mais conhecidas, e também as mais interessantes do ponto de vista da física, são a solução de Schwarzschild, a solução de Reissner-Nordström e a métrica de Kerr, cada uma correspondendo a um certo tipo de buraco negro em um universo vazio,[45] e os universos Friedmann-Lemaître-Robertson-Walker e de Sitter, cada um descrevendo um cosmos em expansão.[46] Soluções exatas de grande interesse teórico incluem o universo de Gödel (que abre a intrigante possibilidade da viagem no tempo em espaços-tempos curvos), a solução de Taub–NUT (um modelo de universo que é homogêneo, mas anisotrópico) e o anti-espaço de Sitter (que recentemente ganhou destaque no contexto do que é chamado de conjectura Maldacena).[47]
Dada a dificuldade de encontrar soluções exatas, as equações de campo de Einstein também são resolvidas frequentemente por integração numérica num computador, ou considerando pequenas perturbações de soluções exatas. No campo da relatividade numérica, computadores poderosos são empregados para simular a geometria do espaço-tempo e resolver as equações de Einstein para situações interessantes, como dois buracos negros em colisão.[48] Em princípio, esses métodos podem ser aplicados a qualquer sistema, com recursos computacionais suficientes, e podem tratar de questões fundamentais, como singularidades nuas. Soluções aproximadas também podem ser encontradas por teorias de perturbação, como a gravidade linearizada[49] e sua generalização, a expansão pós-newtoniana, ambas desenvolvidas pelo cientista alemão. A última fornece uma abordagem sistemática para resolver a geometria de um espaço-tempo que contém uma distribuição de matéria que se move lentamente em comparação com a velocidade da luz. A expansão envolve uma série de termos; os primeiros termos representam a gravidade newtoniana, enquanto os termos posteriores representam correções cada vez menores à teoria de Newton, devido à relatividade geral.[50] Uma extensão dessa expansão é o formalismo parametrizado pós-newtoniano (PPN), que permite comparações quantitativas entre as previsões da relatividade geral e as teorias alternativas.[51]
A relatividade geral tem várias consequências físicas. Algumas seguem diretamente dos axiomas da teoria, enquanto outras se tornaram claras apenas no curso de muitos anos de pesquisa que se seguiram à publicação inicial de Einstein.
Assumindo que o princípio da equivalência se mantenha,[52] a gravidade influencia a passagem do tempo. A luz enviada para o poço da gravidade é desviado para o azul, enquanto a luz enviada na direção oposta (ou seja, saindo do poço gravitacional) é desviada para o vermelho; coletivamente, esses dois efeitos são conhecidos como desvio de frequência gravitacional. De maneira mais geral, os processos próximos a um corpo massivo são mais lentos quando comparados aos processos que estão ocorrendo mais longe; este efeito é conhecido como dilatação do tempo gravitacional.[53]
O desvio para o vermelho gravitacional foi medido em laboratório[54] e usando observações astronômicas.[55] A dilatação do tempo gravitacional no campo gravitacional da Terra foi medida inúmeras vezes usando relógios atômicos,[56] enquanto a validação contínua é fornecida como um efeito colateral da operação do Sistema de Posicionamento Global (GPS).[57] Testes em campos gravitacionais mais fortes são fornecidos pela observação de pulsares binários.[58] Todos os resultados estão de acordo com a relatividade geral.[59] No entanto, no nível atual de precisão, essas observações não podem distinguir entre a relatividade geral e outras teorias em que o princípio de equivalência é válido.[60]
A relatividade geral prevê que o caminho da luz siga a curvatura do espaço-tempo ao passar perto de uma estrela. Este efeito foi inicialmente confirmado observando a luz das estrelas ou quasares distantes sendo desviados quando passa o Sol.[61]
Essa e outras previsões relacionadas derivam do fato de que a luz segue o que é chamado de geodésica nula ou leve — uma generalização das linhas retas ao longo das quais a luz viaja na física clássica. Tais geodésicas são a generalização da invariância da velocidade da luz na relatividade especial.[62] À medida que se examina os modelos de espaço-tempo adequados (seja a solução Schwarzschild externa ou, para mais de uma massa única, a expansão pós-newtoniana),[63] surgem vários efeitos da gravidade sobre a propagação da luz. Embora a curvatura da luz também possa ser derivada pela extensão da universalidade da queda livre à luz,[64] o ângulo de deflexão resultante de tais cálculos é apenas metade do valor dado pela relatividade geral.[65]
Intimamente relacionado à deflexão da luz está o atraso de tempo gravitacional (ou atraso de Shapiro), o fenômeno em que os sinais de luz demoram mais para se mover através de um campo gravitacional do que na ausência desse campo. Houve inúmeros testes bem-sucedidos dessa previsão.[66] No formalismo pós-newtoniano parametrizado (PPN), as medidas tanto da deflexão da luz quanto do atraso gravitacional determinam um parâmetro chamado γ, que codifica a influência da gravidade na geometria do espaço.[67]
Previstas por Einstein em 1916,[68][69] as ondas gravitacionais são fenômenos que consistem em ondulações na métrica do espaço-tempo que se propagam na velocidade da luz. Estas são uma das várias analogias entre a gravidade do campo fraco e o eletromagnetismo, pois são análogas às ondas eletromagnéticas. Em 11 de fevereiro de 2016, a equipe do Observatório de Ondas Gravitacionais por Interferômetro Laser (LIGO) anunciou[70] que havia detectado diretamente ondas gravitacionais de um par de buracos negros se fundindo.[71][72][73]
O tipo mais simples de tal onda pode ser visualizada pela ação de um anel de partículas livremente flutuantes. Uma onda senoidal que se propaga através desse anel em direção ao leitor distorce o anel de uma maneira característica e rítmica (imagem animada à direita).[74] Como as equações de Einstein são não-lineares, ondas gravitacionais arbitrariamente fortes não obedecem à superposição linear, dificultando sua descrição. No entanto, para campos fracos, uma aproximação linear pode ser feita. Essas ondas gravitacionais linearizadas são suficientemente precisas para descrever as ondas extremamente fracas que espera-se que cheguem à Terra a partir de eventos cósmicos distantes, que tipicamente resultam em distâncias relativas aumentando e diminuindo em ou menos. Métodos de análise de dados usam rotineiramente o fato de que essas ondas linearizadas podem ser decompostas por Fourier.[75]
Algumas soluções exatas descrevem ondas gravitacionais sem qualquer aproximação, por exemplo, um trem de ondas que viaja através do espaço vazio[76] ou universos de Gowdy, variedades de um cosmos em expansão cheio de ondas gravitacionais.[77] Mas para ondas gravitacionais produzidas em situações astrofisicamente relevantes, como a fusão de dois buracos negros, os métodos numéricos são atualmente a única maneira de construir modelos apropriados.[78]
Na relatividade geral, os apsides (o ponto de aproximação mais extremo de um corpo em órbita no centro de massa do sistema) de qualquer órbita sofrerão precessão; a órbita não é uma elipse, mas semelhante a uma que gira em seu foco, resultando numa forma semelhante a uma curva rosa (ver imagem). Einstein derivou primeiro este resultado usando uma métrica aproximada representando o limite newtoniano e tratando o corpo em órbita como uma partícula de teste. Para ele, o fato de sua teoria ter dado uma explicação direta da mudança anômala do periélio de Mercúrio, descoberta anteriormente por Urbain Le Verrier em 1859, era uma evidência importante de que havia finalmente identificado a forma correta das equações do campo gravitacional.[79]
O efeito também pode ser derivado usando a métrica exata de Schwarzschild (descrevendo o espaço-tempo em torno de uma massa esférica)[80] ou o muito mais geral formalismo pós-newtoniano.[81] Isso ocorre devido à influência da gravidade na geometria do espaço e à contribuição da auto-energia para a gravidade do corpo (codificada na não-linearidade das equações de Einstein).[82] A precessão relativista foi observada em todos os planetas que permitem medições precisas de precessão (Mercúrio, Vênus e Terra),[83] bem como em sistemas de pulsares binários, onde é superior a cinco ordens de grandeza.[84]
Na relatividade geral, o deslocamento do periélio σ, expresso em radianos por revolução, é dado aproximadamente por:[85]
onde
De acordo com a relatividade geral, um sistema binário emitirá ondas gravitacionais, perdendo energia. Devido a essa perda, a distância entre os dois corpos em órbita diminui, assim co