Лучшие вопросы
Таймлайн
Чат
Перспективы

Алгебраическая независимость

Из Википедии, свободной энциклопедии

Remove ads

Алгебраическая независимость — понятие теории расширений полей.

Пусть некоторое расширение поля . Элементы называются алгебраически независимыми, если для произвольного не равного тождественно нулю многочлена с коэффициентами из поля

.

В другом случае элементы называются алгебраически зависимыми. Бесконечное множество элементов называется алгебраически независимым, если независимым является каждое его конечное подмножество, и называется зависимым в противном случае. Определение алгебраической независимости можно распространить на случай, когда кольцо и — его подкольцо.

Remove ads

Алгебраическая независимость известных констант

Пусть константы и известны как трансцендентные, однако неизвестно, является ли их множество алгебраически независимым над [1]. Неизвестно даже, иррационально ли [2]. Нестеренко доказал в 1996 году, что:

  • числа , и алгебраически независимы над [3];
  • числа и алгебраически независимы над ;
  • для всех положительных целых чисел , число алгебраически независимы над [4].
Remove ads

Пример

Подмножество поля вещественных чисел не является алгебраически независимым над полем , поскольку многочлен является нетривиальным с рациональными коэффициентами и .

Remove ads

См. также

Ссылки

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads