Лучшие вопросы
Таймлайн
Чат
Перспективы
Алгебраическая теория чисел
раздел теории чисел Из Википедии, свободной энциклопедии
Remove ads
Алгебраическая теория чисел — раздел теории чисел, основная задача которого — изучение свойств целых элементов числовых полей.
В алгебраической теории чисел понятие числа расширяется, в качестве алгебраических чисел рассматривают корни многочленов с рациональными коэффициентами. При этом аналогом целых чисел выступают целые алгебраические числа, то есть корни унитарных многочленов с целыми коэффициентами. В отличие от целых чисел в кольце целых алгебраических чисел не обязательно выполняется свойство факториальности, то есть единственности разложения на простые множители.
Теория алгебраических чисел обязана своим появлением изучению диофантовых уравнений и в том числе попыткам доказать великую теорему Ферма. Куммеру принадлежит равенство
- , где — корни степени из единицы.
Таким образом Куммер определил новые целые числа вида . Позднее Лиувилль показал, что если алгебраическое число является корнем уравнения степени , то к нему нельзя подойти ближе чем на , приближаясь дробями вида , где и — целые взаимно простые числа[1].
После определения алгебраических и трансцендентных чисел в алгебраической теории чисел выделилось направление, которое занимается доказательством трансцендентности конкретных чисел, и направление, которое занимается алгебраическими числами и изучает степень их приближения рациональными и алгебраическими[1].
Алгебраическая теория чисел включает в себя такие разделы, как теорию дивизоров, теорию Галуа, теорию полей классов, дзета- и L-функции Дирихле, когомологии групп[англ.] и многое другое.[источник не указан 4075 дней]
Одним из основных приёмов является вложение поля алгебраических чисел в своё пополнение по какой-то из метрик — архимедовой (например, в поле вещественных или комплексных чисел) или неархимедовой (например, в поле p-адических чисел).
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads