Лучшие вопросы
Таймлайн
Чат
Перспективы
Диофантово уравнение
Полиномеальное уровнение, у которого все коэффициенты и корни(нули) - целые числа Из Википедии, свободной энциклопедии
Remove ads
Диофа́нтово уравнение (также уравнение в целых числах) — это уравнение вида
где — целочисленная функция, например, полином с целыми коэффициентами, а переменные принимают целые значения. «Диофантовым» уравнение названо в честь древнегреческого математика Диофанта.
Также при рассмотрении вопроса разрешимости переменные часто разделяют на параметры (значения которых предполагаются фиксированными) и неизвестные. Так, уравнение
с параметрами и неизвестными считается разрешимым при данных значениях набора параметров , если существуют набор чисел , при которых это равенство становится верным.
Таким образом, диофантовыми уравнениями называют уравнения с целыми коэффициентами, для которых требуется найти целочисленные (или натуральные) решения. При этом количество неизвестных в уравнении должно быть не менее двух[1]. Своё название уравнения получили в честь выдающегося античного математика Диофанта Александрийского, который, как считается, первым систематически изучал неопределённые уравнения и описывал методы их решения[2]. Все сохранившиеся записи собраны в книгу «Арифметика»[3]. После Диофанта схожим изучением неопределённых уравнений занимались индусские математики, начиная примерно с пятого века[4]. В Европе решением неопределённых уравнений занимались практически все крупные алгебраисты своего времени: Леонардо Фибоначчи (ок.1170 — 1250 гг.), Франсуа Виет (1540—1603 гг.), Симон Стевин (ок. 1549—1620 гг.)[5].
Проблема решения уравнений в целых числах рассмотрена до конца для уравнений с одним неизвестным, а также для уравнений первой и второй степени с двумя неизвестными.
Remove ads
Примеры
- :
- При решениями этого уравнения являются пифагоровы тройки.
- Согласно Великой теореме Ферма, это уравнение не имеет ненулевых целых решений при .
- — гипотеза Эйлера утверждает, что для любого натурального числа n > 2 это уравнение неразрешимо в натуральных числах , то есть никакую n-ю степень натурального числа нельзя представить в виде суммы n-1 n-х степеней других натуральных чисел. Гипотеза является обобщением великой теоремы Ферма, но была опровергнута для n = 4 и n = 5, после чего была выдвинута гипотеза Ландера — Паркина — Селфриджа.
- , где параметр n не является точным квадратом — уравнение Пелля.
- , где , — уравнение Каталана, которое имеет единственное решение .
- при и — уравнение Туэ.
Remove ads
Линейные диофантовы уравнения
Суммиров вкратце
Перспектива
Общий вид линейного диофантова уравнения:
В частности, линейное диофантово уравнение с двумя неизвестными имеет вид:
Если (то есть наибольший общий делитель не делит ), то уравнение (1) не разрешимо в целых числах. В самом деле, если , то число, стоящее слева в (1), делится на , а стоящее справа — нет. Справедливо и обратное: если в уравнении выполняется , то оно разрешимо в целых числах.
Пусть — частное решение уравнения . Тогда все его решения находятся по формулам:
Частное решение можно построить следующим образом. Если и делится на , то после деления всех коэффициентов на уравнение приобретает вид , где . Для последнего уравнения частное решение получается из соотношения Безу для :
исходя из которого, можно положить
Известна явная формула для серии решений линейного уравнения, следующая из теоремы Эйлера[6]:
где — функция Эйлера, а t — произвольный целый параметр.
Remove ads
Алгебраические диофантовы уравнения
Суммиров вкратце
Перспектива
При рассмотрении вопроса разрешимости алгебраических диофантовых уравнений можно воспользоваться тем, что любую систему таких уравнений можно преобразовать в одно диофантово уравнение степени не выше 4 в целых неотрицательных числах, разрешимое в том и только том случае, когда разрешима исходная система (при этом множество переменных и множество решений этого нового уравнения может оказаться совершенно другим).
Диофантовы множества
Диофантовым множеством называется множество состоящее из упорядоченных наборов из n целых чисел, для которого существует алгебраическое диофантово уравнение:
которое разрешимо тогда и только тогда, когда набор чисел принадлежит этому множеству. Рассматриваемое диофантово уравнение называется диофантовым представлением этого множества. Важный результат, полученный Ю. В. Матиясевичем, состоит в том, что каждое перечислимое множество имеет диофантово представление[7].
Неразрешимость в общем виде
Десятая проблема Гильберта, сформулированная в 1900 году, состоит в нахождении алгоритма решения произвольных алгебраических диофантовых уравнений. В 1970 году Ю. В. Матиясевич доказал алгоритмическую неразрешимость этой проблемы.[8]
Экспоненциальные диофантовы уравнения
Если одна или более переменных в диофантовом уравнении входит в выражение показателя возведения в степень, такое диофантово уравнение называется экспоненциальным.
Примеры:
Общая теория решения таких уравнений отсутствует; частные случаи, такие как Гипотеза Каталана, были исследованы. Однако большинство из этих уравнений всё же удаётся решить специальными методами, такими как теорема Стёрмера[англ.] или даже метод проб и ошибок.
Remove ads
См. также
Примечания
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads