Лучшие вопросы
Таймлайн
Чат
Перспективы
Бесконечномерное пространство
Из Википедии, свободной энциклопедии
Remove ads
Бесконечномерное пространство — векторное пространство c бесконечно большой размерностью. Изучение бесконечномерных пространств и их отображений является главной задачей функционального анализа. Наиболее простыми бесконечномерными пространствами являются гильбертовы пространства, наиболее близкие по свойствам к конечномерным евклидовым пространствам[1].
Определение
Линейное векторное пространство называется бесконечномерным, если для любого целого числа в нем найдется линейно независимая система, состоящая из векторов[2][3].
Базис
Суммиров вкратце
Перспектива
Для бесконечномерного пространства существуют различные определения базиса. Так, например, базис Гамеля определяется, как множество векторов в линейном пространстве, таких, что любой вектор пространства может быть представлен в виде некоторой их конечной линейной комбинации единственным образом.
Для топологических векторных пространств можно определить базис Шаудера. Система элементов образует базис Шаудера пространства , если каждый элемент представим единственным образом в виде сходящегося ряда [4]. Базис Шаудера существует не всегда.
Remove ads
Примеры
- Линейное пространство непрерывных на данном промежутке функций[2].
- Гильбертово пространство, образованное бесконечной последовательностью чисел со сходящейся суммой квадратов [5].
- Множество всех многочленов (над данным полем)[6].
- Пространство квадратично-суммируемых последовательностей
Свойства
- Бесконечномерное пространство не изоморфно никакому конечномерному[7].
См. также
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads