Лучшие вопросы
Таймлайн
Чат
Перспективы

Геометрическая прогрессия

Из Википедии, свободной энциклопедии

Remove ads

Геометри́ческая прогре́ссия (иногда также кра́тная прогрессия) — последовательность чисел , , , (члены прогрессии), в которой первый член отличен от нуля, а каждый из последующих членов, начиная со второго, получается из предыдущего умножением на ненулевое число (знаменатель прогрессии, или коэффициент). Выражаясь математически: [1].

Remove ads

Описание

Суммиров вкратце
Перспектива

Любой член геометрической прогрессии может быть вычислен по формуле

Если каждый член геометрической прогрессии больше предыдущего, то прогрессия называется возрастающей; если меньше предыдущего, то убывающей[2].


Геометрическая прогрессия возрастает, если выполняется один из наборов условий:

и

или

и .

Геометрическая прогрессия убывает, если выполняется один из наборов условий:

и

или

и .

Геометрическая прогрессия называется бесконечно убывающей[2], если знаменатель прогрессии по абсолютной величине меньше единицы.

При  — знакочередующейся[3], при  — стационарной (постоянной).

Своё название прогрессия получила по своему характеристическому свойству:

то есть модуль любого члена геометрической прогрессии, кроме первого, равен среднему геометрическому (среднему пропорциональному) двух рядом с ним стоящих членов[4].

Однако это не только свойство, но и признак геометрической прогрессии, формулировка которого звучит следующим образом:

Последовательность положительных чисел тогда и только тогда является геометрической прогрессией, когда каждый её член, начиная со второго, есть среднее геометрическое предшествующего и последующего членов.

Данный признак можно расширить на другие случаи. Если её члены отрицательны, получим , где .

Если знаки членов прогрессии чередуются, получим , где либо и .

Графическая интерпретация

Если на координатной плоскости нанести точки с координатами , где  — номер (натуральное число), а  — -й член некоторой геометрической прогрессии, у которой , то все точки будут принадлежать графику функции:

где  — это знаменатель геометрической прогрессии, а  — её первый член[2]. Это означает, что справедлива теорема:

Для того чтобы последовательность являлась геометрической прогрессией при , необходимо и достаточно, чтобы являлась показательной функцией (от ), заданной на множестве натуральных чисел. [2]

Remove ads

Примеры

Thumb
Получение новых квадратов путём соединения середин сторон предыдущих квадратов
  • Последовательность площадей квадратов, где каждый следующий квадрат получается соединением середин сторон предыдущего — бесконечная геометрическая прогрессия со знаменателем 1/2. Площади получающихся на каждом шаге треугольников также образуют бесконечную геометрическую прогрессию со знаменателем 1/2, сумма которой равна площади начального квадрата[5]:8—9.
  • Геометрической является последовательность количества зёрен на клетках в задаче о зёрнах на шахматной доске.
  • 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 — геометрическая прогрессия со знаменателем 2 из тринадцати членов.
  • 50; 25; 12,5; 6,25; 3,125; … — бесконечно убывающая геометрическая прогрессия со знаменателем 1/2.
  • 4; 6; 9 — геометрическая прогрессия из трёх элементов со знаменателем 3/2.
  • , , ,  — стационарная геометрическая прогрессия со знаменателем 1 (и стационарная арифметическая прогрессия с разностью 0).
  • 3; −6; 12; −24; 48; … — знакочередующаяся геометрическая прогрессия со знаменателем −2.
  • 1; −1; 1; −1; 1; … — знакочередующаяся геометрическая прогрессия со знаменателем −1.
Remove ads

Свойства

Суммиров вкратце
Перспектива

Свойства знаменателя геометрической прогрессии

Знаменатель геометрической прогрессии можно найти по формулам:

Свойства членов геометрической прогрессии

  • Рекуррентное соотношение для геометрической прогрессии:
  • Формула общего (-го) члена:
  • Обобщённая формула общего члена:
  • , если .
  • , если .

Пусть — соответственно -й, -й, -й члены геометрической прогрессии, где . Тогда для всякой такой тройки выполняется комплементарное свойство геометрической прогрессии, называемое тождеством геометрической прогрессии:

  • Произведение первых членов геометрической прогрессии можно рассчитать по формуле
  • Произведение членов геометрической прогрессии начиная с k-го члена, и заканчивая n-м членом, можно рассчитать по формуле
  • Сумма первых членов геометрической прогрессии
  • Суммой бесконечно убывающей геометрической прогрессии называется число, к которому сумма первых членов бесконечно убывающей геометрической прогрессии стремится и неограниченно приближается с ростом . Сумма всех членов убывающей прогрессии:
, то при , и
при .

Свойства суммы геометрической прогрессии

где  — сумма обратных величин, то есть .

Свойства произведения геометрической прогрессии

Произведением первых членов геометрической прогрессии называется произведение от до , то есть выражение вида Обозначение: .

Remove ads

См. также

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads