Лучшие вопросы
Таймлайн
Чат
Перспективы

Задача Римана о распаде произвольного разрыва

определение пространственно-временного распределения параметров газа с начальным условием в виде контактного разрыва Из Википедии, свободной энциклопедии

Remove ads

Задача Римана о распаде произвольного разрыва — задача о построении аналитического решения нестационарных уравнений механики сплошных сред, в применении к распаду произвольного разрыва[1]. Полностью решена в ограниченном круге частных случаев — для уравнений газовой динамики идеального газа и некоторых более точных приближений (т. н. газ с двучленным уравнением состояния) и уравнений теории мелкой воды. Решение для уравнений магнитной газовой динамики построимо, по всей видимости, вплоть до необходимости численного решения одного достаточно сложного обыкновенного дифференциального уравнения.

Remove ads

Постановка

Решается одномерная задача о распаде разрыва — то есть полагается, что до начального момента времени две области пространства с различными значениями термодинамических параметров (для газовой динамики это плотность, скорость и давление газа) были разделены тонкой перегородкой, а в начальный момент времени перегородку убирают. Требуется построить решение (то есть зависимость всех термодинамических параметров от времени и координаты) при произвольных начальных значениях переменных.

Решение задачи о распаде произвольного разрыва состоит в определении газодинамического течения, возникающего при . Другими словами, речь идёт о решении задачи Коши для уравнений газовой динамики, в которой начальные условия заданы в виде описанного выше произвольного разрыва.

Remove ads

Решение

Суммиров вкратце
Перспектива
Thumb
Решение задачи Римана для идеального изначально покоящего газа с показателем адиабаты и относительным скачком давления и плотности . По оси абсцисс отложена автомодельная переменная (безразмерная координата), по оси ординат — давление, плотность и скорость в относительных единицах. Слева направо: покоящийся газ, волна разрежения, контактный разрыв, ударная волна, покоящийся газ.

Оказывается, что для систем уравнений, записываемых в дивергентной форме, решение будет автомодельным.

Решение ищется в виде набора элементарных волн, определяющегося структурой системы уравнений. В частности, для газовой динамики это: ударная волна, волна разрежения, контактный разрыв. Приведём решение в явном виде для частного случая покоящегося идеального газа с показателем адиабаты . Пусть в начальный момент давление , плотность и скорость имеют вид:

и — волна идёт направо. Тогда в произвольный момент времени решение имеет вид

Невозмущённое вещество Волна разрежения Область между фронтом волны разрежения и контактным разрывом Область между контактным разрывом и фронтом ударной волны Невозмущённое вещество

Здесь — скорость звука в невозмущённой среде слева, , , , — параметры газа и скорость звука между фронтом ударной волны и контактным разрывом, , , — параметры газа между контактным разрывом и ударной волной, — скорость ударной волны. Эти пять параметров определяются из нелинейной системы уравнений, отвечающих законам сохранения энергии, массы и импульса:

Первые три уравнения здесь соответствуют соотношениям Гюгонио для идеального газа[2], четвёртое и пятое — соотношениям в волне разрежения[3].

Remove ads

Применение

Решение задачи Римана находит применение в численных методах при решении нестационарных задач с большими разрывами. Именно на решении (точном или приближенном) задачи Римана о распаде разрыва основывается метод Годунова решения систем нестационарных уравнений механики сплошной среды.

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads