Лучшие вопросы
Таймлайн
Чат
Перспективы

Задача Томсона

Из Википедии, свободной энциклопедии

Remove ads

Задача Томсона состоит в нахождении конфигурации с минимальной полной потенциальной энергии электростатического заряда для N электронов, на единичной сфере, которые отталкиваются друг от согласно закону Кулона. Задача поставлена Дж. Дж. Томсоном в 1904 году после того, как он предложил модель атома, позже названную моделью Томсона, основанную на его знаниях о существовании отрицательно заряженных электронов в нейтрально заряженных атомах.

Связанные задачи включают изучение геометрии конфигурации минимальной энергии и нахождения минимальной энергии при больших N.

Remove ads

Математическая формулировка

Суммиров вкратце
Перспектива

Физическая система, воплощённая в задаче Томсона, является частным случаем одной из восемнадцати нерешённых математических задач, предложенных математиком Стивеном Смейлом — «Распределение точек на сфере». Решение каждой проблемы N электронов получается, когда конфигурация N электронов ограниченная поверхностью сферы единичного радиуса, r = 1, даёт глобальный минимум электростатической потенциальной энергии U(N)

Энергия электростатического взаимодействия, возникающая между каждой парой электронов равных зарядов (, элементарный заряд электрона) определяется законом Кулона,

здесь  — постоянная Кулона и расстояние между каждой парой электронов, расположенных в точках на сфере, определяемых векторами и соответственно.

Упрощенные единицы и используются без потери основного смысла. Потом,

Полная потенциальная энергия электростатического заряда каждой конфигурации N-электронов может быть выражена как сумма всех парных взаимодействий.

Глобальная минимизация по всем возможным наборам из N различных точек обычно находят алгоритмы численной минимизации.

Пример

Решение проблемы Томсона для двух электронов получается, когда оба электрона находятся как можно дальше друг от друга на противоположных сторонах начала координат, , или

Remove ads

Известные решения

Суммиров вкратце
Перспектива
Thumb
Точные решения задачи Томсона для конфигурации от 2 до 5 электронов

Конфигурации с минимальной энергией были строго математически определены только в нескольких случаях.

  • При N = 1 решение тривиально, так как электрон может находиться в любой точке поверхности единичной сферы. Полная энергия конфигурации определяется как ноль, так как электрон не подвергается воздействию электрического поля от других зарядов.
  • При N = 2 оптимальная конфигурация состоит из электронов в антиподальных точках.
  • При N = 3 электроны находятся в вершинах равностороннего треугольника вокруг большой окружности .
  • При N = 4 электроны находятся в вершинах правильного тетраэдра.
  • Для N = 5 в 2010 году было получено математически строгое компьютерное решение с электронами, находящимися в вершинах треугольной бипирамиды.
  • При N = 6 электроны находятся в вершинах правильного октаэдра.
  • При N = 12 электронов находятся в вершинах правильного икосаэдра.

Примечательно, что решения задачи Томсона для N = 4, 6 и 12 электронов образуют тела Платона, грани которых являются равными равносторонними треугольниками, при этом заряды находятся в вершинах платонового многогранника. Конфигурации численных решений для N = 8 и 20 не являются правильными выпуклыми многогранниками оставшихся двух платоновых тел, грани которых являются квадратными и пятиугольными, соответственно, это куб и додекаэдр[1].

Remove ads

Обобщения

Можно также запросить основные состояния частиц, взаимодействующих с произвольными потенциалами. Чтобы быть математически точным, пусть f будет убывающей вещественной функцией. Определим энергетическую функцию

Традиционно считается также известная как ядро Рисса. Для неинтегрируемых ядер Рисса справедлива теорема о бублике с маком. Известные случаи включают α = ∞, проблему Таммеса ; α = 1, проблема Томсона; α = 0, задача Уайта (максимизировать произведение расстояний).

Отношения к другим научным проблемам

Суммиров вкратце
Перспектива

Проблема Томсона является естественным следствием модели сливового пудинга Томсона в отсутствие её равномерного положительного фонового заряда.

«Ни один факт, обнаруженный об атоме, не может быть тривиальным и не может ускорить прогресс физической науки, так как большая часть естественной философии является результатом структуры и механизма атома».

Хотя экспериментальные данные привели к отказу от томсоновской модели пудинга в качестве полной модели атома, было обнаружено, что неоднородности, наблюдаемые в численных энергетических решениях задачи Томсона, соответствуют наполнению электронной оболочки естественными атомами по всей периодической таблице элементов.

Проблема Томсона также играет роль в изучении других физических моделей, включая многоэлектронные пузырьки и упорядочение поверхности жидких металлических капель, заключенных в ловушках Пола .

Обобщенная проблема Томсона возникает, например, при определении расположения белковых субъединиц, которые составляют оболочки сферических вирусов . «Частицы» в данном случае представляют собой кластеры белковых субъединиц, расположенных на оболочке. Другие примеры включают в себя регулярное расположение коллоидных частиц в коллоидосомах , предлагаемых для инкапсуляции активных ингредиентов, таких как лекарственные средства, питательные вещества или живые клетки, фуллереновые структуры атомов углерода и теория отталкивания электронных пар. Примером дальнодействующих логарифмических взаимодействий являются вихри Абрикосова, которые образовались бы при низких температурах в сверхпроводящей металлической оболочке с большим электромагнитным полем в центре.

Remove ads

Известные конфигурации с наименьшей энергией

В следующей таблице  — количество точек (зарядов) в конфигурации,  — энергия, тип симметрии указан в нотации Шёнфлиса (см. Точечные группы в трёх измерениях),  — позиции зарядов. Большинство типов симметрии требуют, чтобы векторная сумма положений (и, следовательно, электрический дипольный момент) была равна нулю.

Принято также учитывать многогранник, образованный выпуклой оболочкой точек. Таким образом,  — число вершин, где встречается данное число рёбер,  — общее количество рёбер,  — количество треугольных граней,  — четырёхугольных граней, и  — наименьший угол, представленный векторами, связанными с ближайшей парой зарядов. Обратите внимание, что длины рёбер обычно не равны; таким образом (за исключением случаев N = 4, 6, 12, 24) выпуклая оболочка только топологически эквивалентна однородному многограннику или телу Джонсона. Вторые перечислены в последнем столбце.

Подробнее , ...

Согласно предположению, если , p — многогранник, образованный выпуклой оболочкой из m точек, q — число четырёхугольных граней p , то решение для m электронов равно f (m):.

Remove ads

Примечания

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads