Лучшие вопросы
Таймлайн
Чат
Перспективы
Изотропный вектор
Из Википедии, свободной энциклопедии
Remove ads
Изотро́пный ве́ктор (нульвектор) — ненулевой вектор псевдоевклидова векторного пространства (над полем вещественных чисел) или унитарного векторного пространства (над полем комплексных чисел), ортогональный самому себе, или, что эквивалентно, имеющий нулевую длину в смысле скалярного произведения рассматриваемого пространства. Наименование изотропный связано с физическим понятием изотропии.
В евклидовых пространствах таких векторов нет — нулевой длиной обладают лишь векторы, равные нулю. В псевдоевклидовых пространствах изотропные векторы существуют и образуют изотропный конус. Именно, вектор векторного пространства над полем вещественных или комплексных чисел с заданной в качестве скалярного произведения невырожденной билинейной формой с сигнатурой изотропен, если .
Remove ads
Связанные понятия

- Изотропным конусом псевдоевклидова или унитарного векторного пространства называется множество, состоящее из всех векторов нулевой длины данного пространства, то есть всех изотропных векторов и нулевого вектора.
- Изотропное подпространство — подпространство псевдоевклидова или унитарного векторного пространства, целиком содержащееся в изотропном конусе этого пространства, то есть целиком состоящее из векторов нулевой длины. Подпространство является изотропным тогда и только тогда, когда любые два его вектора ортогональны друг другу[1]. Максимальная размерность изотропного подпространства псевдоевклидова пространства сингатуры не превосходит [2].
- Вырожденное подпространство — подпространство псевдоевклидова или унитарного векторного пространства, ограничение скалярного произведения на которое вырождено. Подпространство является вырожденным тогда и только тогда, когда оно содержит хотя бы один изотропный вектор, ортогональный всем остальным векторам этого подпространства[1]. Очевидно, любое изотропное подпространство является вырожденным, но обратное не верно.
Remove ads
Примеры

- Простейший пример — изотропные векторы и изотропный конус в — псевдоевклидовом пространстве сигнатуры (2,1). Квадрат длины вектора задается формулой . Изотропный конус — прямой круговой конус . Изотропные подпространства — лежащие на нём прямые (образующие), вырожденные подпространства (отличные от изотропных) — плоскости, касающиеся изотропного конуса, то есть имеющие с ним ровно одну общую прямую. Все остальные плоскости являются либо евклидовыми (если пересекаются с изотропным конусом лишь в его вершине), либо псевдоевклидовыми сигнатуры (1,1) (если пересекаются с ним по двум различным прямым)[3].
- Важнейший пример — изотропные векторы и изотропный конус в пространстве Минковского — псевдоевклидовом пространстве сигнатуры (1,3), используемом в качестве геометрической интерпретации пространства-времени специальной теории относительности. В этом пространстве каждый вектор e имеет четыре координаты: , где ― скорость света, и квадрат его длины задается формулой . Изотропный конус пространства Минковского называется световым конусом, а изотропные векторы — световыми или светоподобными. Векторы, лежащие внутри светового конуса (), называются времениподобными, а векторы, лежащие вне светового конуса (), называются пространственноподобными.
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads